基于FRS和SVM的化工过程故障诊断
2023-02-25 19:07:29 324KB 研究论文
1
基于深度学习的肿瘤辅助诊断系统,以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的模型构建、后端架设和前端访问功能。 4 提交
2023-02-24 15:59:51 3.52MB 脑肿瘤检测 深度学习
1
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于小波包和经验模态分解(Empirical Mode Decomposition,简称EMD)的滚动轴承故障诊断方法。该方法用小波包对振动信号进行预处理,用Hilbert变换求重构信号的包络,采用EMD方法将包络信号分解为若干个IMF分量,让故障信息得到凸显,然后根据某个分量的频谱,判断滚动轴承的故障类型。实验结果表明,比传统的时频分析方法,该方法能够更有效地提取轴承故障特征,诊断轴承故障。
1
对突变信号进行有效识别,达到故障诊断的目的
2023-02-10 21:02:59 254KB 小波分析 故障诊断 特征提取
1
齿轮箱升降速过程中的振动信号包含有重要的参考信息,研究该过程中的振动信号,有助于识别齿轮箱的故障。将常规的倒谱分析技术与阶次分析相结合,提出了阶次倒谱的齿轮箱故障诊断方法。首先利用重采样技术,将时域非平稳信号转化为角域平稳信号,最后对角域重采样信号进行倒阶次谱分析,就可提取齿轮的故障特征。实验分析结果表明该方法能有效地识别齿轮的故障类型。图8,表1,参8。
2023-02-09 10:05:27 293KB 自然科学 论文
1
针对齿轮箱升降速过程中振动信号非平稳的特点,将阶次跟踪、角域平均和连续小波变换相结合,提出了基于角域平均和连续小波变换的齿轮箱故障诊断方法。首先对齿轮箱升降速瞬态信号进行时域同步采样,再对时域信号进行等角度重采样,转化为角域平稳信号,然后对角域信号进行角域平均,以消除干扰噪声的影响,最后对角域平均信号进行连续小波变换,根据小波幅值图和相位图,就可提取齿轮的故障特征。通过对齿轮齿根裂纹故障实验信号的分析,表明该方法能有效地诊断齿轮的故障状态。
2023-02-07 10:29:32 856KB 工程技术 论文
1
本文采用振动诊断法,在对汽车发动机进行结构及其典型故障分析,以及对振动信号的时域、频域及小波包进行深入分析的基础上,针对现场实测的EQ6102汽油型发动机机体表面振动信号与气缸盖固紧螺栓振动信号,提出了该型发动机的故障诊断流程,即对所测振动信号进行相关分析,根据发动机机体振动信号的频率特性,确定出故障气缸;然后对该故障气缸进行时域分析,得出峭度参量是汽油发动机故障的敏感时域参数;接着对该故障信号进行频域分析,由随转速增加的频率图及柴油发动机的典型故障定性分析确定出该发动机的故障类型;最后对该故障信号进行小波包分析,确定该种故障的特征频带。通过上述分析确定的发动机故障敏感参量,可以为神经网络等模式识别提供较为准确的特征参量。 关键词:汽车故障诊断;神经网络;系统仿真
2023-02-04 14:10:25 3.15MB 神经网络 汽车发动机 智能诊断
1
AUTOSAR_SWS_DiagnosticCommunicationManager.pdf 诊断通信管理DCM
2023-02-02 16:16:14 5.61MB 诊断通信管理DCM
1
国家ICD-10标准诊断编码
2023-02-02 14:32:22 7.38MB 国家ICD-10标准诊断编码
1
基于状态观测器的故障诊断方法,陈晓智,,本文给出了故障诊断的基本概念和该学科研究方法的详细分类表,从数学模型的角度介绍了基于观测器的故障诊断方法,并详细推导了失
2023-01-15 09:22:46 158KB 状态估计
1