基于51单片机的多路DS18B20温度检测与声光报警系统Proteus仿真实现,基于51单片机的多路DS18B20温度检测与显示系统(Proteus仿真+Keil编译器C语言程序实现),基于51单片机的多路温度检测proteus仿真_ds18b20(仿真+程序+原理图) 仿真图proteus 7.8 proteus 8.9 程序编译器:keil 4 keil 5 编程语言:C语言 功能说明: 通过对多路DS18B20温度传感器的数据采集,实现8路 4路温度采集并将数值显示在LCD显示屏上; 通过按键设置温度报警值,逐个显示传感器的温度,当lcd显示温度超过设定值时,系统声光报警。 ,基于51单片机的多路温度检测; DS18B20; Proteus仿真; 程序编译器; 原理图; 温度采集; 报警值设置; 声光报警。,基于51单片机与DS18B20传感器的多路温度检测与报警系统Proteus仿真
2025-04-25 19:44:56 1.27MB
1
基于Keil编译器的Proteus多路DS18B20温度传感器采集与LCD显示系统,基于51单片机的多路温度检测proteus仿真_ds18b20(仿真+程序+原理图) 仿真图proteus 7.8 proteus 8.9 程序编译器:keil 4 keil 5 编程语言:C语言 功能说明: 通过对多路DS18B20温度传感器的数据采集,实现8路 4路温度采集并将数值显示在LCD显示屏上; 通过按键设置温度报警值,逐个显示传感器的温度,当lcd显示温度超过设定值时,系统声光报警。 ,基于51单片机的多路温度检测; DS18B20; Proteus仿真; 程序编译器(Keil 4/5); C语言编程; 温度采集与显示; 报警功能。,基于51单片机与DS18B20传感器的多路温度检测与报警系统Proteus仿真
2025-04-25 18:14:01 255KB 正则表达式
1
利用MCMC的M-H算法对指数分布进行仿真,是学习计算统计学M-H算法的经典例子,根据M准则,马尔科夫链细致平衡条件收敛至正确参数。
2025-04-25 15:44:47 959B M-H算法
1
内容概要:本文详细介绍了在Carsim和Simulink联合仿真环境中,利用线性二次型调节器(LQR)算法进行自动驾驶车辆横向控制的方法和技术细节。首先,通过MATLAB函数实现了LQR的设计,重点讨论了状态方程和二次型代价函数的应用,特别是针对不同车速条件下的时变处理。接着,文章深入探讨了状态变量的选择、权重矩阵Q和R的配置以及速率限制器的设置,强调了这些因素对控制系统性能的影响。此外,还提到了一些调试技巧和常见问题的解决方案,如数值稳定性和模型线性化。最后,通过多个实际案例展示了LQR算法的有效性和优越性,特别是在高速变道和紧急情况下的表现。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对控制理论感兴趣的高级工程师。 使用场景及目标:适用于希望深入了解自动驾驶横向控制原理的研究人员和技术开发者,旨在帮助他们掌握LQR算法的具体实现方法,提高车辆路径跟踪的精确度和平顺性。 其他说明:文中提供了大量MATLAB代码片段和调试建议,有助于读者更好地理解和应用所介绍的技术。同时,文章还分享了一些实战经验和教训,为相关项目的实施提供宝贵的参考。
2025-04-25 11:18:42 738KB LQR算法
1
自动驾驶控制技术:基于PID&LQR控制路径跟踪的Simulink与Carsim联合仿真研究报告,自动驾驶控制:基于PID&LQR控制路径跟踪的Simulink与Carsim联合仿真研究报告,自动驾驶控制-PID&LQR控制路径跟踪仿真 Simulink和Carsim联合仿真,横向控制为前馈+反馈lqr,纵向为位置-速度双PID控制 对于减小误差,可以联合后轮转向 四轮转向算法(小店中有) 下图为Simulink模型截图,跟踪效果,误差等 提供模型文件,包含, ,核心关键词: 1. 自动驾驶控制 2. PID控制 3. LQR控制 4. 路径跟踪仿真 5. Simulink联合仿真 6. Carsim联合仿真 7. 前馈+反馈LQR横向控制 8. 位置-速度双PID控制 9. 减小误差 10. 四轮转向算法 以上关键词用分号分隔为:自动驾驶控制; PID控制; LQR控制; 路径跟踪仿真; Simulink联合仿真; Carsim联合仿真; 前馈+反馈LQR横向控制; 位置-速度双PID控制; 减小误差; 四轮转向算法。,自动驾控仿真的PID&LQR联合控制路径跟踪研究
2025-04-25 11:10:55 1.27MB
1
在现代航空领域,多电飞机(More Electric Aircraft,MEA)技术的应用越来越广泛,它通过减少液压和气压系统,更多地依赖电力系统来驱动飞机的各种功能。机电作动器(Electro-Mechanical Actuator,EMA)是这种趋势的关键组成部分,它们在飞行控制系统、襟翼、扰流板等关键部位起着重要作用。本文将详细讨论基于永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)的机电作动器仿真模型及其关键技术。 机电作动器的核心是永磁同步电机,其优点在于高效率、高功率密度和宽范围的可控性。PMSM利用永磁体产生的磁场与电磁场相互作用,实现电机的旋转。在设计仿真模型时,我们需要考虑以下几个关键部分: 1. **作动电机系统**:这是整个机电作动器的动力源。永磁同步电机的模型需要考虑到电机的电气特性,如电压方程、转矩方程和磁链方程,通过这些方程可以推导出电机的动态行为。在仿真过程中,通常会采用矢量控制策略,这种策略能有效地解耦转矩和磁链控制,提高电机性能。 2. **机械传动系统**:电机产生的旋转动力需要通过齿轮箱或其他传动机构传递给负载。这部分需要考虑齿轮的齿形、摩擦、回差(backlash,这可能就是backlash.m文件的内容)等因素,以准确模拟动力传递过程中的损耗和效率。 3. **负载系统**:负载可能包括飞机的舵面、操纵杆或其他需要驱动的部件。在仿真中,负载的特性,如惯性、阻尼和刚度等,会影响作动器的响应速度和稳定性。 4. **控制策略**:为了满足飞行控制的实时性和精确性要求,机电作动器通常配备有先进的控制器。这些控制器可能包括PID控制、滑模控制、自适应控制等,它们确保电机输出的力或速度能准确跟踪设定值。 EMA.mdl文件很可能包含了整个机电作动器的Simulink模型,其中包含了电机模型、传动模型和负载模型的组件,以及相应的控制器模块。通过这个模型,我们可以进行静态和动态仿真,分析不同工况下的作动器性能,如启动、停止、过载等情况,还可以输出电流、电压、速度、位置等关键参数的仿真曲线,为实际系统的设计和优化提供参考。 "多电飞机机电作动器仿真模型"涉及到电机控制理论、机械传动工程、飞行控制系统等多个领域的知识,是现代航空技术的重要研究内容。通过有效的仿真模型,我们可以更好地理解和优化机电作动器的性能,从而推动多电飞机技术的发展。
2025-04-25 02:01:23 25KB 机电作动器 永磁同步电机
1
Proteus是一款强大的电子设计自动化(EDA)软件,主要用于电路设计、模拟仿真、PCB布线等。在电子工程和嵌入式系统开发领域,Proteus被广泛使用,为学习和实践提供了便利的平台。这份"proteus仿真资料"压缩包很可能是为了帮助用户深入了解和掌握Proteus的各项功能。 1. Proteus简介:Proteus由英国Labcenter Electronics公司开发,它集成了电路原理图设计、元器件库、虚拟原型测试、单片机编程、PCB布局等功能。其独特的卖点在于能够对包含微控制器的复杂系统进行实时仿真。 2. 原理图设计:在Proteus中,用户可以使用丰富的元件库来绘制电路原理图。库中包含了各种常用电子元器件,如电阻、电容、晶体管、集成电路等,甚至包括了各种微控制器和传感器模型。 3. 仿真功能:Proteus的强大之处在于其仿真实时性。它可以模拟电路的工作过程,观察电压、电流的变化,甚至能看到LED灯闪烁、数码管显示等动态效果。这对于教学和项目调试非常有帮助。 4. 单片机编程:Proteus支持多种单片机型号,如常见的8051、AVR、PIC系列。用户可以直接在Proteus环境中编写、编译和下载代码,然后进行仿真验证,无需额外的硬件设备。 5. PCB设计:除了仿真,Proteus还提供PCB设计工具,允许用户完成电路板的布局和布线工作。虽然不如专业级的PCB设计软件功能强大,但对于初学者和小规模项目来说已经足够。 6. 教育应用:由于其直观易用和全面的功能,Proteus在教育领域被广泛应用。学生可以通过Proteus来学习电子电路知识,进行项目实践,提高动手能力。 7. 实例教程:压缩包中的文件可能包含各种Proteus的实例教程,涵盖了从基础到进阶的各类电路和项目,例如数字逻辑电路、电机控制、通信系统等。通过这些教程,用户可以逐步掌握Proteus的使用技巧。 8. 学习资源:"proteus仿真资料"可能还包含了元器件使用说明、常见问题解答、设计案例分析等,这些都是辅助学习的重要资源,可以帮助用户解决在使用过程中遇到的问题。 9. 技术支持:对于初学者来说,理解Proteus的每个功能可能需要时间。这份资料可能提供了详细的用户手册或视频教程,帮助用户快速上手。 10. 实践与创新:通过Proteus,用户不仅可以验证理论知识,还能进行创新设计。比如,可以构建物联网项目,模拟无线通信,甚至搭建复杂的机器人控制系统。 这份"proteus仿真资料"是一份全面的Proteus学习资源,无论是初学者还是经验丰富的工程师,都能从中受益,提升自己的电子设计技能。通过深入学习和实践,用户将能更好地理解和运用Proteus进行电路设计和仿真。
2025-04-25 01:13:28 141.34MB proteus
1
《基于Matlab Simulink与PLECS仿真的两相与三相交错并联Boost变换器研究:包含开环、单电压环及电压电流双闭环控制模态的电流均流控制效果分析》,两相交错并联boost变器仿真 三相交错并联boost变器仿真 模型内包含开环,单电压环,电压电流双闭环三种控制模态 两个电感的电流均流控制效果好 matlab simulink plecs仿真模型 ~ ,两相交错并联boost仿真;三相交错并联boost仿真;控制模态;均流控制;Matlab Simulink PLECS仿真模型,"多模态交错并联Boost变换器仿真研究"
2025-04-24 19:35:23 168KB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-24 19:24:31 8.92MB matlab
1
《74HC192设计9S倒计时仿真电路》是基于数字集成电路74HC192实现的一种倒计时电路,适用于多种应用场景,如实验室教学、电子竞赛或者简单的定时器装置。74HC192是一款具有二进制计数功能的集成电路,常用于定时、计数等场合。本设计提供了详细的电路方案、仿真结果以及PCB设计,旨在帮助用户理解并实际操作这一电路。 74HC192是一款高速CMOS集成电路,属于74系列的一部分,具有四路十进制同步加法计数器。它能够对输入时钟脉冲进行计数,并在每个计数周期结束时提供相应的输出状态。74HC192包含四个独立的计数器,每个计数器可以单独编程为二进制或十进制计数模式,这使得它在各种计数应用中非常灵活。 在9S倒计时电路设计中,74HC192被配置为一个递减计数器,初始状态设定为9999(二进制形式),然后随着时钟脉冲的下降沿逐次减小,直到达到零。这个过程可以通过逻辑门电路控制,确保在计数到零时触发特定的输出信号,以指示倒计时结束。24秒倒计时也可以通过调整初始状态和时钟频率来实现,例如设置初始值为576(24的二进制表示)。 报告部分可能涵盖了电路设计的理论基础、电路工作原理、仿真步骤以及实验结果分析。它详细介绍了如何配置74HC192的控制引脚,如清零(CLR)、预置数(LOAD)、进位输出(Cout)等,以实现所需的倒计时功能。同时,报告可能还涉及了时钟信号的产生,例如使用555定时器或者其他频率源。 PCB原理图则是电路的实际布局,包括元器件的选择、连接方式以及信号走向。在PCB设计中,需要考虑信号的完整性和抗干扰性,合理安排电源、接地以及信号线,确保电路的稳定工作。PCB设计通常会使用专业软件如Altium Designer、EAGLE等进行绘制,完成后可进行生产打样和测试。 74HC192设计的9S倒计时电路是一个实用的数字电路实例,它结合了数字逻辑、计数器原理和PCB设计技术。通过学习这个设计,可以深入理解数字集成电路的工作原理,提升电子设计能力。对于初学者来说,这是一个很好的实践项目,能够提高理论知识与实际操作的结合能力。而对于经验丰富的工程师,这样的设计可以作为快速构建定时或计数功能的基础模块。
2025-04-24 14:53:06 1.25MB
1