TGA图片解码
2024-04-17 23:28:13 28KB TGA图片解码
1
UNet++模型本身并不是直接用于图片分类的,而是主要用于图像分割任务,特别是医学图像分割。UNet++是UNet模型的一个改进版本,通过引入深度监督和密集跳跃连接来增强特征提取和融合的能力,从而提高了分割精度。 然而,如果你希望使用类似UNet++的结构进行图片分类任务,你可以进行一些调整。一种可能的方法是将UNet++的解码器部分(即上采样和特征融合部分)替换为一个全局平均池化层和一个全连接层,以便输出分类结果。 以下是一个大致的步骤,描述如何将UNet++结构适应于图片分类任务: 编码器部分:保持UNet++的编码器部分不变,这部分主要用于从输入图像中提取特征。编码器通常由多个下采样块组成,每个块包含卷积层、归一化层和激活函数。 特征融合:在编码器部分,不同层次的特征图可以通过跳跃连接进行融合。这些融合的特征图有助于捕获不同尺度的信息。 替换解码器:在UNet++中,解码器部分负责将融合后的特征图上采样到与原始输入图像相同的尺寸。然而,在图片分类任务中,我们不需要这样的上采样过程。因此,你可以将解码器部分替换为一个全局平均池化层,用于将特征图转换为一个固定大小的特征向量
2024-04-16 20:27:24 400.09MB
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-04-15 17:07:04 99KB python 爬虫 数据收集
1
CCPD2019车牌数据集,10000张图片,已制作YOLO格式标签,可以直接训练
2024-04-15 13:12:42 525.13MB 数据集 车牌检测 CCPD YOLO
1
输入经纬高即可提取百度地图中存在的街景图片
2024-04-12 22:23:24 5KB python 爬虫 百度地图
1
AI换脸是指利用基于深度学习和计算机视觉来替换或合成图像或视频中的人脸。可以将一个人的脸替换为另一个人的脸,或者将一个人的表情合成到另一个人的照片或视频中。算法常常被用在娱乐目上,例如在社交媒体上创建有趣的照片或视频,也有用于电影制作、特效制作、人脸编辑工具和虚拟现实。但也有可能被滥用,用于欺骗、虚假信息传播或隐私侵犯。 随着AI换脸技术的广泛应用,这也引起很多的关注和担忧,因为它可以用于制造虚假的视频内容,可能导致社会和政治问题。AI换脸技术也会引发法律和伦理问题,包括隐私问题和身份验证问题。滥用这些技术可能导致个人的声誉受损,也可能用于欺骗和诈骗。 AI换脸技术不断发展,变得越来越先进的同时,也有研究人员和技术公司努力开发检测和防御AI换脸的方法,以应对滥用和虚假信息传播的问题。 这里结合实现了一些常用的AI换脸技术,从人脸检测到人脸关键点检测,再到AI换脸,然后使用算法进行人脸修复和超分,以便大家更好的了解AI换脸这个智能算法,只能全面的理解才能做到更好的防范。
2024-04-12 14:54:04 74.04MB 人工智能
1
BDD100K数据集。BDD100K(Berkley DeepDrive 100K)是一个大规模的自动驾驶数据集,由加州大学伯克利分校的Berkley DeepDrive项目团队创建。该数据集旨在为自动驾驶研究提供大量的真实世界驾驶场景数据。 BDD100K数据集包含超过10万个视频序列,涵盖了不同地点、不同天气条件、不同场景的驾驶情况。每个视频序列都配备了高分辨率的前置摄像头记录的图像和对应的传感器数据,如GPS位置、车辆速度、车辆加速度等。这使得研究人员可以在真实世界的多样化驾驶场景中进行算法和模型的测试和评估。 BDD100K数据集主要关注场景理解和目标检测任务。它提供了包括车辆、行人、自行车、交通标志等多个类别的标注边界框。此外,数据集还提供了语义分割标注,用于对图像进行像素级别的分类。这使得研究人员可以进行更细粒度的场景理解和分析。 BDD100K数据集的规模和多样性使得它成为自动驾驶研究和算法开发的重要资源。研究人员可以利用该数据集进行目标检测、语义分割、行为预测等任务的训练和评估。一共上传的是7万张图片以及对应的标签(json格式),需要进行格式转换。图片过大传不了
2024-04-10 22:34:39 146.95MB 目标检测 交通物流
1
借助SD卡,将大数据量的图片先存在SD卡,再通过HDMI显示在显示器上; 选了三张分辨率为1920*1080的高清图,然后三张循环播放,循环间隔1s; 效果如下视频链接:https://live.csdn.net/v/356461 对应博客请参考我的主页
2024-04-10 17:10:37 146.03MB fpga开发 ZYNQ hdmi
1
使用VC++编程,显示JPG图片,还可以进行比例放大缩小的操作
2024-04-10 11:17:06 332KB
1