机器学习中的数学修炼(数据)
2024-08-23 21:46:04 5KB
1
适用人数:有赞微商城单店版本 ASP.NET ASHX文件 需要将数据传送给企业微信群(群机器人) 使用场景及目标:获取有赞推送过来的数据,读取数据后,将数据转给企业微信需要的格式 再发送给企业微信群 补充说明: 1、需要在有赞云中,先订阅接口 2、在企业微信中添加微信群机器人,并获取企业微信群中的webhook地址 3、程序需要有正式的域名进行发布后,让有赞有订单时,直接推送给对应的网址 4、程序中未添加校验的代码,需要自行添加 5、其中有LOG的操作,大家根据自己实际订阅的情况,获取真实有赞推送过来的数据 有赞默认提供的数据示例和实际的并不相同,需要大家根据实际情况进行调整
2024-08-23 18:19:11 433KB ashx asp.net 企业微信机器人
1
时间:2003-2018年 指标:进出口额 来源:城市NJ 范围:280个地级市 格式为面板格式,可直接使用
2024-08-23 17:40:10 147KB
1
机器学习数学基础:线性代数+微积分+概率统计+优化算法 机器学习作为现代科技的璀璨明珠,正在逐渐改变我们的生活。而在这背后,数学扮演着至关重要的角色。线性代数、微积分、概率统计和优化算法,这四大数学领域为机器学习提供了坚实的理论基础。 线性代数是机器学习中的基础语言。矩阵和向量作为线性代数中的核心概念,是数据表示和计算的基础。在机器学习中,我们经常需要将数据转化为矩阵形式,通过矩阵运算提取数据的特征。特征提取是机器学习模型训练的关键步骤,而线性代数则为我们提供了高效处理数据的工具。 微积分则是机器学习模型优化的得力助手。在机器学习中,我们通常需要找到一种模型,使得它在给定数据集上的性能达到最优。这就需要我们对模型进行求导,分析模型参数对性能的影响,进而调整参数以优化模型。微积分中的导数概念为我们提供了分析模型性能变化的方法,帮助我们找到最优的模型参数。 概率统计则是机器学习数据处理和模型评估的基石。在机器学习中,数据往往带有噪声和不确定性,而概率统计可以帮助我们评估数据的分布和特征,进而构建更加稳健的模型。同时,概率统计也为我们提供了模型评估的方法,通过计算模型的准确率、召回率 ### 机器学习数学基础详解 #### 一、线性代数基础 **1.1 向量和矩阵** - **1.1.1 标量、向量、矩阵、张量之间的联系** 标量、向量、矩阵和张量是线性代数中的基本概念,它们之间存在着紧密的联系。 - **标量(Scalar)**:一个单独的数字,没有方向。 - **向量(Vector)**:一组有序排列的数字,通常用来表示方向和大小。 - **矩阵(Matrix)**:一个二维数组,由行和列组成的数据结构。 - **张量(Tensor)**:一个更高维度的数组,它可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。 **联系**:标量可以视为0维张量;向量是一维张量;矩阵是二维张量;更高维度的数组称为张量。 - **1.1.2 张量与矩阵的区别** - **代数角度**:矩阵是二维张量,而更高维度的张量则包含了更复杂的数据结构。 - **几何角度**:矩阵和向量都是不变的几何量,不随参照系的变化而变化。张量也可以用矩阵形式来表达,但其可以扩展到更高的维度。 - **1.1.3 矩阵和向量相乘结果** 当一个矩阵与一个向量相乘时,可以理解为矩阵的每一行与向量相乘的结果构成新的向量。 - 例如,如果有一个$m \times n$的矩阵$A$与一个$n \times 1$的向量$x$相乘,结果将是一个$m \times 1$的向量$y$,其中每个元素$y_i = \sum_{j=1}^{n} a_{ij}x_j$。 - **1.1.4 向量和矩阵的范数归纳** 向量的范数是衡量向量大小的一种标准。 - **向量的1范数**:向量各分量的绝对值之和。 - 对于向量$\vec{x} = (x_1, x_2, ..., x_n)$,其1范数定义为$||\vec{x}||_1 = |x_1| + |x_2| + ... + |x_n|$。 - **向量的2范数**:也称为欧几里得范数,是各分量平方和的开方。 - $||\vec{x}||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$。 - **向量的无穷范数**:向量各分量的最大绝对值。 - $||\vec{x}||_\infty = \max(|x_1|, |x_2|, ..., |x_n|)$。 **1.2 导数和偏导数** - **1.2.1 导数偏导计算** 导数用于描述函数在某一点处的变化率,而偏导数则是多元函数关于其中一个自变量的变化率。 - **1.2.2 导数和偏导数有什么区别?** - **导数**:对于单一自变量的函数$f(x)$,导数$f'(x)$描述了该函数在$x$点处的切线斜率。 - **偏导数**:对于多变量函数$f(x_1, x_2, ..., x_n)$,偏导数$\frac{\partial f}{\partial x_i}$描述了当保持其他变量不变时,$f$关于$x_i$的变化率。 **1.3 特征值和特征向量** - **1.3.1 特征值分解与特征向量** 特征值和特征向量是线性代数中的重要概念,用于理解和简化矩阵。 - **特征值**:如果存在非零向量$\vec{v}$使得$A\vec{v} = \lambda\vec{v}$,那么$\lambda$就是矩阵$A$的一个特征值。 - **特征向量**:满足上述等式的非零向量$\vec{v}$。 - **1.3.2 奇异值与特征值的关系** - **奇异值**:对于任何矩阵$A$,其奇异值是$A^\top A$(或$AA^\top$)的特征值的平方根。 - **关系**:奇异值和特征值在特定情况下相同,尤其是在正交矩阵和对称矩阵中。 #### 二、微积分基础 - **1.2 导数和偏导数**(已在上文提到) - **1.3 特征值和特征向量**(已在上文提到) #### 三、概率统计基础 **1.4 概率分布与随机变量** - **1.4.1 机器学习为什么要使用概率** 在机器学习中,概率用于描述数据的不确定性,并提供了一种量化方式来预测未来事件的可能性。 - **1.4.2 变量与随机变量有什么区别** - **变量**:可以取多种不同值的量。 - **随机变量**:变量的一种特殊类型,其值是根据某个概率分布随机确定的。 - **1.4.3 随机变量与概率分布的联系** - 随机变量的每个可能值都对应一个概率,这些概率构成了随机变量的概率分布。 - **1.4.4 离散型随机变量和概率质量函数** - **离散型随机变量**:只能取有限个或可数无限个值的随机变量。 - **概率质量函数**:描述离散型随机变量各个值的概率。 - **1.4.5 连续型随机变量和概率密度函数** - **连续型随机变量**:可以取区间内的任意值的随机变量。 - **概率密度函数**:描述连续型随机变量在某一区间的概率密度。 - **1.4.6 举例理解条件概率** - 条件概率$P(A|B)$表示在事件$B$已经发生的条件下,事件$A$发生的概率。 - 例如,假设在一个班级中,$P(\text{女生}) = 0.5$,$P(\text{女生|戴眼镜}) = 0.6$,意味着在戴眼镜的学生中,60%是女生。 - **1.4.7 联合概率与边缘概率联系区别** - **联合概率**:两个事件同时发生的概率。 - **边缘概率**:单个事件发生的概率。 - **联系**:联合概率可以通过边缘概率和条件概率计算得出。 - **1.4.8 条件概率的链式法则** - 条件概率的链式法则描述了如何通过一系列条件概率来计算联合概率。 - 例如,$P(A,B,C) = P(C|A,B)P(B|A)P(A)$。 - **1.4.9 独立性和条件独立性** - **独立性**:两个事件$A$和$B$独立,如果$P(A|B) = P(A)$且$P(B|A) = P(B)$。 - **条件独立性**:事件$A$和$B$在已知事件$C$的情况下条件独立,如果$P(A|B,C) = P(A|C)$。 **1.5 常见概率分布** - **1.5.1 Bernoulli分布** - 描述只有两种可能结果的随机试验(如成功或失败)的概率分布。 - 参数$p$表示成功的概率,失败的概率为$1-p$。 - **1.5.2 高斯分布** - 又称正态分布,是一种非常常见的连续概率分布。 - 参数$\mu$代表均值,$\sigma^2$代表方差。 - **1.5.3 何时采用正态分布** - 正态分布广泛应用于自然和社会科学领域,特别是在中心极限定理的支持下,很多随机变量可以近似为正态分布。 - **1.5.4 指数分布** - 描述事件发生的时间间隔的分布。 - 参数$\lambda$表示事件发生的平均频率。 - **1.5.5 Laplace 分布** - 也是一种连续概率分布,具有比高斯分布更重的尾部。 - 参数$\mu$代表均值,$b$代表尺度参数。 - **1.5.6 Dirac分布和经验分布** - **Dirac分布**:一个概率质量集中在单个点的分布。 - **经验分布**:基于观测数据的分布,反映了数据的真实概率分布情况。 **1.6 期望、方差、协方差、相关系数** - **1.6.1 期望** - 期望是对随机变量取值的加权平均。 - 对于离散型随机变量,期望定义为$E[X] = \sum x_i p(x_i)$。 - **1.6.2 方差** - 方差衡量随机变量与其期望值之间的偏差程度。 - 定义为$Var(X) = E[(X-E[X])^2]$。 - **1.6.3 协方差** - 协方差描述两个随机变量之间的线性相关性。 - 定义为$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$。 - **1.6.4 相关系数** - 相关系数是标准化后的协方差,用于衡量两个变量的相关强度。 - 定义为$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$,其中$\sigma_X$和$\sigma_Y$分别是$X$和$Y$的标准差。 通过以上详细的介绍,我们可以看到,线性代数、微积分、概率统计和优化算法在机器学习中的应用极为广泛,它们为机器学习提供了坚实的数学基础。掌握这些基础知识对于深入理解机器学习算法至关重要。
2024-08-23 11:30:23 852KB 机器学习 线性代数
1
在PowerBuilder(PB)开发环境中,数据窗口(DataWindow)是一种强大的组件,用于显示和操作数据库中的数据。在“PB数据窗口鼠标移动字体变色”这个主题中,我们关注的是如何实现在用户鼠标移动到数据窗口某一行时,该行的字体颜色发生改变,以提供视觉反馈和增强用户体验。下面我们将深入探讨这一功能的实现原理和步骤。 1. **数据窗口控件:** PowerBuilder的数据窗口控件是其核心特性之一,它可以动态地从数据库中获取数据,并以各种布局(如表格、报告、交叉表等)展示。数据窗口支持多种交互方式,包括编辑、排序、过滤等。 2. **鼠标事件处理:** PB提供了丰富的事件处理机制,其中包括与鼠标操作相关的事件,如MouseEnter、MouseLeave、MouseMove等。这些事件可以在数据窗口对象的脚本中被捕获并处理,从而实现特定的功能。 3. **字体颜色变化实现:** 要实现鼠标移动到数据行时字体变色,我们需要编写一段脚本来监听MouseMove事件。当鼠标移到数据窗口的某一行时,可以通过设置该行的属性,比如FontColor或ForeColor来改变字体颜色。以下是一个简单的示例: ```pb // 在数据窗口对象的MouseMove事件中 string ls_rownum ls_rownum = dw_1.CurrentRow // 获取当前鼠标所在行号 if (dw_1.Object[ls_rownum].ForeColor <> RGB(255, 0, 0)) // 检查当前颜色是否为红色 { dw_1.Object[ls_rownum].ForeColor = RGB(255, 0, 0) // 改变颜色为红色 } else { dw_1.Object[ls_rownum].ForeColor = RGB(0, 0, 0) // 如果已经是红色,恢复原色 } ``` 4. **示例项目文件:** 提供的文件名如`mousemovetxet.usr.opt`、`mousemovetxet.pbl`和`mousemovetxet.pbt`,分别代表了用户的选项文件、PowerBuilder库文件和项目文件。这些文件包含了实现上述功能的具体代码和资源。`.usr.opt`文件存储了用户界面的相关设置,`.pbl`文件是一个包含自定义对象的库,而`.pbt`文件则是整个项目的容器,它包含了所有的对象、脚本和设置。 5. **实际应用:** 这种字体变色的技巧在实际应用中很有用,例如,可以用来突出显示用户正在查看的数据,或者在鼠标悬停时高亮显示关键信息。通过结合其他视觉提示,可以创建更直观、更用户友好的应用程序界面。 实现“PB数据窗口鼠标移动字体变色”涉及到对PowerBuilder数据窗口控件的深入理解,以及对事件处理和对象属性的熟练运用。通过这样的交互设计,开发者能够提升用户与数据的互动体验,使软件更加易用。
2024-08-23 11:23:00 12KB pb数据窗口 鼠标移动变色
1
测绘屠夫天宝DINI03莱卡DNA03数据处理专家2.7.3.0(X86).exe
2024-08-23 10:39:10 2.4MB
1
标题中的“火焰+烟雾检测数据集+标签-01”表明这是一个专门针对火焰和烟雾检测训练的数据集,其中包含了图像以及相应的标签信息。这个数据集是深度学习领域的一个重要资源,尤其对于目标检测任务而言,它是模型训练的基础。 在描述中提到,该数据集包含2500张图像,这些图像旨在帮助模型识别和区分火焰与烟雾。数据集中的标签是以JSON格式提供的,这意味着每张图片都有一个对应的JSON文件,详细描述了图像中火焰或烟雾的位置和其他相关信息。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也方便机器解析和生成,是处理结构化数据的理想选择。 标签中提到了“深度学习”、“目标检测”和“YOLO”,这暗示了该数据集可以用于训练基于深度学习的目标检测模型,特别是YOLO(You Only Look Once)算法。YOLO是一种实时目标检测系统,它的优势在于速度快、效率高,能够在一帧视频中一次性完成检测,非常适合实时监控场景下的火焰和烟雾检测。 在深度学习领域,目标检测是计算机视觉的一个重要子领域,它旨在识别并定位图像中的特定对象。对于火焰和烟雾检测,目标检测可以帮助早期发现火灾隐患,从而及时采取措施防止灾难发生。YOLO的工作原理是将图像分割成多个小网格,并预测每个网格内是否存在目标以及目标的类别和边界框。通过优化网络参数,模型能够学习到火焰和烟雾的特征,提高检测精度。 在实际应用中,这样的数据集可以被用于训练和验证深度学习模型,例如使用YOLOv3或更新的版本。训练过程通常包括前向传播、反向传播和优化,以最小化损失函数,从而提高模型的预测能力。数据集的大小(2500张图片)虽然相对较小,但足够用于初步的模型训练和验证,特别是在数据增强技术的帮助下,如翻转、缩放、裁剪等,可以有效地扩充数据集,增加模型的泛化能力。 总结来说,这个“火焰+烟雾检测数据集+标签-01”是一个适用于深度学习目标检测任务的资源,特别是针对YOLO框架。它包含的2500张图片和JSON标签信息为训练和评估模型提供了基础,对于防火安全监测系统开发或相关研究具有重要意义。通过利用该数据集,开发者和研究人员可以构建更准确、快速的火焰和烟雾检测系统,提升公共安全水平。
2024-08-23 10:26:39 222.87MB 深度学习 目标检测 YOLO
1
2000-2022年地级市乡村振兴测算数据(30个指标) 时间:2000-2022年 来源:城市NJ、各地区NJ、地级市J 详细指标参看:https://blog.csdn.net/m0_71334485/article/details/132217902
2024-08-22 15:47:48 5.7MB
1
在IT领域,尤其是人工智能和计算机视觉的研究中,数据集扮演着至关重要的角色。"海面海上各种数据集(数据说明及地址)" 提供了一组专门针对海洋环境的数据集,适用于图像分类和图像目标检测任务。这样的数据集是训练和评估机器学习模型,特别是深度学习模型的基础。 我们来看一下“海上船的分类.txt”。这个文件很可能是包含了一个分类数据集的信息,用于训练模型识别不同类型的船只。在图像分类任务中,模型需要学习区分不同的类别,例如货船、渔船、游轮等。数据集通常包括多个图像文件,每个文件代表一个特定类别的实例,并且每个图像都带有相应的标签,指示其所属类别。为了训练一个高效的模型,数据集需要具有多样性,涵盖各种光照条件、角度、天气状况下的船只图像,以便模型能够在现实世界中准确地进行分类。 “海上舰船检测识别.txt”可能是一个目标检测数据集的描述。与图像分类不同,目标检测不仅需要识别出图像中的对象,还要确定其在图像中的精确位置。这类数据集通常包含边界框标注,即对每个目标物体在图像中的位置用矩形框进行标记。模型在学习了这些标注后,可以预测新图像中舰船的位置并进行分类。这类任务在海洋监控、安全和导航等领域有着广泛的应用。 “readme.txt”通常是提供数据集详细信息的文档,包括数据集的来源、如何获取、如何使用、数据格式、类别数量、样本大小、版权信息等。阅读这份文档对于理解数据集的结构和正确使用至关重要。 使用这样的数据集,研究人员和开发者可以构建AI系统,帮助自动化海洋监测,比如识别海上交通情况、检测潜在的危险如漂浮物或非法捕鱼活动。同时,它也可以为学术研究提供基础,验证和改进计算机视觉算法的性能。 "海面海上各种数据集"为开发和研究提供了宝贵的资源,通过机器学习和深度学习技术,我们可以构建更加智能的系统,以更高效的方式处理和分析海洋领域的大量图像数据。在实践中,这些数据集可以被分割为训练集、验证集和测试集,用于模型的训练、调优以及最终性能评估。同时,由于数据集是开源免费的,这极大地降低了进入该领域的门槛,鼓励更多的创新和合作。
2024-08-22 10:29:48 1KB 数据集
1
(带手机版数据同步)蒸炉厨具设备系统类网站源码餐饮厨具设备网站模板.txt
1