202011-LYGSG 本仓库纯属娱乐,其中的代码完全利用汪小短式拟合的方式来提升成绩,是毫无价值的代码,请大家不要学习。
2021-11-20 12:26:18 7KB Python
1
整体介绍 供水系统基于STM32H750芯片开发的,该系统的操作台主要有两个部分,一个是LCD触摸屏控制还有onenet云平台控制,该系统具有远程监测水位控制水泵的功能,适合一些养殖场或者种植场等一些灵活供水的场所。该系统可以远程无线控制实用性较强。 开发工具和环境 主控:STM32H750 外设:ESP8266WIFI模块,L298N驱动模块,AD采集 编程开发配置环境:RT-Thread Studio,STM32CubeMX,Env,Keil uVision5,TOUCHGFX RT-Thread使用情况概述内核部分:调度器,信号量,消息队列。 调度器:创建多个线程来实现不同的工作。 信号量:用来同步线程。 消息队列:用来实现线程之间传递的数据。 软件包部分: Webclient:提供设备与 HTTP Server 的通讯的基本功能。 pahomqtt,:本软件包是在 Eclipse paho-mqtt 源码包的基础上设计的一套 MQTT 客户端程序。 Onenet:是 RT-Thread 针对 OneNET 平台连接做的的适配,通过这个软件包,可以让设备在 RT-Thread 上非常方便的连接 OneNet 平台,完成数据的发送、接收、设备的注册和控制等功能。 cJSON:C语言实现的极简的解析 JSON 格式的软件包。 at_device:是由 RT-Thread AT 组件针对不同 AT 设备的移植文件和示例代码组成,目前支持的 AT 设备有:ESP8266、M26、MC20、RW007、MW31、SIM800C 以及 SIM76XX 系列设备等。 硬件框架软件架构 软件模块说明 创建了两个线程(一个用来AD采集另一个用来向ONENET上传数据),一个动态互斥量实现AD采集和ONENET上传数据线程的同步 作品照片 演示视频 比赛感悟 RT-Thread操作系统是我接触的第一个操作系统,通过这次比赛我第一次利用操作系统编写程序,在操作系统的框架下编写程序的逻辑性更加清晰程序运行时芯片的内存分配更加合理. RT-Thread官网提供的资料非常丰富和全面,很适合新手学习,在此非常感谢RT-Thread平台为我们提供了一个这么好的平台。
2021-11-18 11:47:51 95.45MB 物联网 rt-thread 电路设计方案 电路方案
1
一种二次供水数据采集装置的制作方法.docx
2021-11-10 20:02:50 17KB
消防供水设施安装施工方法.docx
2021-11-09 09:02:13 15KB
供水管网发生爆管事故后,快速确定爆管位置,可以实现迅速抢修,有效降低事故的损失。针对爆管定位问题,本文基于人工神经网络(ANN),建立爆管位置与事故时压力监测点的压力变化率之间的非线性映射关系,构建了ANN爆管定位模型,并选取了一个供水管网案例,引入相关系数(R2)指标评估模型的精度,验证了方法的可行性。此外,分析了不同监测点组合对模型定位精度的影响,发现监测点组合均匀分布在管网内部时,模型定位精度越高。   随着我国城市化进程的不断加快,城市供水管网的规模也不断增加,由于缺乏科学合理的规划、维护与运行管理,各大城市的供水管网爆管事故频发,严重影响了城市供水的安全性和经济性,对资源、环境、社会均产生了巨大的负面影响。目前水务公司发现爆管事故多依赖于人工报告,此为被动性爆管定位方法,此方法虽然可以确定准确的爆管点,但弊端也比较明显,检测效率较低,反应时间较长,发现事故时,可能已经造成了较大的损失。因此,需要开展供水管网爆管事故智能检测方面的研究,快速准确地确定爆管位置和事故影响范围,并做出相应的科学决策。   为了解决爆管定位的难题,各国学者均开展了大量的相关研究工作。1992 年,Liggett 等人首先提出基于暂态的爆管定位方法,该方法的基本原理是爆管产生的压力波将先后传播到附近的几个压力监测点,根据传播路径和时间差来诊断爆管位置,但由于压力波传播路径比较复杂,且时间差通常很短,因此定位精度会受到严重影响;等人综合运用负压波和流量检测法进行泄漏模式识别与漏点定位,可及时发现和定位泄漏点。基于水力模型的爆管定位方法也取得了一定的进展,Wu 在此研究方向做出了代表性的工作,其结果被英国的水务公司所采用;Sanz 等人后续推进了这方面的研究,其依据爆管的水量变化过程,不断校核管网模型的空间分布参数,其结果展示出了较高的爆管定位精度;等人利用监测资料与低压供水模型相结合的管网爆管水力学模型实现了爆管定位,并分析了爆管点位置与周围压力变化的关系。随着人工智能技术的快速发展,数据驱动的智能爆管分析方法成为了国内外学者的热点关注问题。应用人工免疫网络并结合最近邻方法,推测爆管事故的发生;Zhang等人采用支持向量机分析爆管区域;等人通过SCADA(SupervisoryControl and Data Acquisition)监测系统收集压力数据,对比爆管前后两个时刻的压力值变化,绘制爆管压降等值线图,最后通过压降中心来定位爆管点,以上三个研究均是基于机器学习的方法,通过训练模型达到对实测数据的异常辨识功能,从而确定爆管的位置。   针对智能化的爆管定位问题,本文提出了一种基于人工神经网络(ANN)的供水管网爆管定位方法,利用ANN的模式识别功能,建立爆管位置与压力监测点水压化率之间的非线性映射关系,实现爆管位置的确定。此外,本文选取了一个案例管网,通过大量的模拟爆管事故,验证了所提出方法的可行性。
2021-11-02 16:31:34 825KB 网络/通信
1
西门子PID恒压供水项目
2021-11-01 18:04:03 8KB 西门子
1
技术供水系统安装施工措施.docx
2021-10-24 14:00:31 18KB 技术
行业制造-电动装置-多泥沙河流水轮发电机组的供水系统.zip
行业制造-电动装置-多泥沙河流水轮发电机组的供水系统及供水方案.zip
西门子V20变频器PID控制恒压供水的具体步骤