一、资源说明: 1. 10分钟生成全文,查重率10%左右 2. 免费千字大纲,二级/三级任意切换 3. 提供文献综述、中英文摘要 4. 所有生成的论文模板只可用作格式参考,不允许抄袭、代写、直接挪用等行为。 二、使用方法: 解压后,直接运行versabot.exe,就可以使用了。
2024-08-29 16:09:36 124.14MB 人工智能 毕业设计
1
基于AUC的特征选择是一种用于机器学习中降维和提高模型泛化能力的方法。AUC(Area Under Curve,ROC曲线下的面积)是评估分类模型性能的重要指标,尤其在样本不平衡的情况下表现更加稳定。传统的特征选择方法往往关注单个特征的好坏,而忽视了特征间的互补性,即不同特征之间如何协同工作共同提高分类性能。 ANNC(Maximizing Nearest Neighbor Complementarity)是一种新颖的特征选择方法,它在AUC的基础上,通过考虑最近邻的互补性来提高特征选择的效率。这种方法不仅关注最近邻错分类信息(nearest misses),也考虑最近邻正分类信息(nearest hits),从而全面评价特征对之间的互补性。互补性意味着某些特征在组合中相互增强,通过相互协作能达到更佳的分类效果。 在ANNC方法中,最近邻的计算是在特征空间的不同维度上进行的,以此来评估特征之间的互补性。这种方法的优势在于它提供了一种新颖的方式来判断在另一个特征的辅助下,一个特征的区分度如何。然而,邻域信息通常对噪声很敏感,仅仅考虑一侧的信息(如最近邻错分类)可能会忽视正分类对特征互补性的影响。 ANNC方法的核心在于将这种局部学习基于的互补性评价策略整合到基于AUC的特征选择框架中,从而全面评价特征对之间的互补性。这样做有助于捕捉那些能够相互协作、共同提升识别性能的互补特征。 本文作者提出了ANNC这一算法,并在公开的基准数据集上进行了广泛的实验,以多种度量标准验证了新方法的有效性。实验结果表明,在不同的数据集和各种度量指标下,ANNC方法都显示出显著的性能提升。 ANNC方法不仅考虑了每个特征本身的特性,而且结合了特征之间的相互作用,从而提供了一种更为全面的特征选择策略。这对于复杂的学习场景,如文本分类、图像检索、疾病诊断等,都有着极其重要的意义。由于这些场景下的样本通常由大量的特征来描述,因此找到一个有效的特征子集,对于提高分类器性能和模型的可解释性至关重要。 ANNC的研究论文强调了特征互补性在提高分类性能方面的重要性,并通过实际的实验验证了这一点。特征互补性的概念可以推广到不同的机器学习任务中,而不仅仅是特征选择。在特征工程领域,了解特征之间的关系有助于构建更加强大和鲁棒的机器学习模型。因此,ANNC的贡献不仅限于其作为一个新的特征选择算法,更在于它为我们理解特征相互作用提供了一种新的视角。
2024-08-29 13:36:06 767KB 研究论文
1
LameGUI-1.86和LameGUI 1.8正式版6是两个与音频编码和解码相关的软件工具,特别的是,它们都包含了源代码,这为开发者提供了深入理解其工作原理和进行定制化修改的机会。LameGUI是LAME音频编码器的图形用户界面,使得操作更为直观简便。 LAME(LAME Ain't an MP3 Encoder)是一个著名的开源MP3编码库,广泛应用于音频处理领域。它以其高质量的编码效果和高效的算法而闻名。LameGUI则是LAME编码器的前端程序,提供了一个友好的图形界面,用户可以无需复杂的命令行操作就能完成音频文件的编码,包括设置比特率、采样率、声道等参数。 在LameGUI-1.86和1.8正式版6中,我们可以看到几个关键的文件: 1. **ID3Tags.dat**:这是一个可能包含ID3标签数据的文件,ID3标签是用于存储音乐元数据如艺术家、专辑、歌曲名称等的格式,通常在MP3文件中使用。 2. **LameGUIXP.EXE**:这是LameGUI的执行文件,用于运行图形界面程序,用户通过这个程序进行音频编码操作。 3. **lame.exe**:这是LAME编码器的核心部分,负责实际的音频编码工作。它可以独立运行,也可以通过LameGUIXP.EXE调用。 4. **krnln.fne**:这可能是一个易语言(Easy Language)编写的脚本或模块,易语言是一种中国本土开发的编程语言,简洁易学,这里可能是LameGUI的一部分或扩展功能。 5. **使用说明.html**:这个文件提供了关于如何使用LameGUI的指南,对于新用户来说非常有用,可以帮助他们快速上手。 6. **源代码**:这个目录或文件包含LameGUI和/或LAME编码器的源代码,对于开发者来说是一份宝贵的资源。通过源代码,开发者可以学习到音频编码的实现细节,或者根据自己的需求进行二次开发。 在易语言的支持下,LameGUI能够更好地适应中国用户的使用习惯,提供简体中文界面和操作方式。音频编码解码是数字音频领域的重要技术,涉及到音频质量、文件大小和编码效率的平衡。LameGUI和LAME的结合,不仅提供了便捷的工具,也为开发者提供了研究和学习的平台,对于音频软件的开发和音频处理技术的普及具有重要意义。
2024-08-28 17:51:39 1.02MB 音频编码解码
1
微信小程序是一种轻量级的应用开发平台,主要针对移动端,由腾讯公司推出,旨在提供便捷的、无需下载安装即可使用的应用服务。在这个“微信小程序切片上传文件 源代码”中,我们关注的核心技术是微信小程序如何实现大文件的分片上传。 在微信小程序中,由于网络环境和文件大小限制,直接上传大文件可能会导致性能问题或者网络中断,因此通常会采用文件切片技术。文件切片是指将一个大文件分割成多个小块(切片),然后逐个上传这些切片,最后在服务器端进行重组。这种方式可以提高上传效率,减少因网络问题导致的上传失败,并且允许用户在上传过程中暂停或恢复。 源代码中可能包含以下关键部分: 1. **文件选择**:用户通过小程序的API `wx.chooseFile` 选择需要上传的文件,这个API可以获取到文件的临时路径,为后续的切片做准备。 2. **文件切片**:使用JavaScript的Blob对象来处理文件。通过Blob的slice方法,可以指定开始位置和结束位置,将文件切割成多个小块。每个切片都有自己的Blob对象和偏移量信息,便于后续上传。 3. **分片上传**:对于每个切片,使用`wx.uploadFile` API发起上传请求。需要设置正确的URL、文件的本地路径(临时路径)以及切片的序号等信息。通常,服务器端需要保存每个切片的接收状态,以便在所有切片上传完成后进行重组。 4. **进度更新**:在上传过程中,可以通过`onUploadProgress`回调监听每个切片的上传进度,展示给用户,提供更好的交互体验。 5. **错误处理**:对于可能出现的网络错误,如超时、断网等情况,需要有相应的错误处理机制,例如重试、暂停或取消上传。 6. **文件合并**:在服务器端,收到所有切片后,按照接收到的顺序和偏移量信息进行文件重组。这通常涉及到读取和拼接接收到的二进制数据。 7. **状态管理**:在客户端,需要维护整个上传过程的状态,比如已上传的切片数、未上传的切片数、当前上传的切片等,以便在用户需要时能够暂停、恢复或取消上传。 8. **成功反馈**:文件上传成功后,通常会向用户返回一个确认信息,可能还会包括上传文件的URL或其他元数据。 在提供的压缩包文件名列表中,C.aspx、H.aspx、H.aspx.cs、C.aspx.cs可能包含了实现这一功能的ASP.NET Web应用程序的源代码。C.aspx和H.aspx可能是ASP.NET的页面文件,而.cs后缀的文件则是对应的C#后台代码,用于处理文件上传、合并等逻辑。具体实现细节需要查看源代码才能了解。 这个源代码包提供了微信小程序实现大文件分片上传的示例,对理解微信小程序的文件操作以及服务器端的文件处理逻辑具有参考价值。
2024-08-27 23:50:41 2KB 微信小程序
1
化处理,采用 Pearson 相关系数和 Wasserstein 距离来分析饮食习惯与健康的关联。主成分分析法被用来确定各个评价指标的权重,通过多目标模糊综合评判模型,得出居民饮食习惯的综合评判值,进而揭示存在的问题。 对于问题二,我们需要探讨生活习惯和饮食习惯是否与个体的社会属性(如年龄、性别、婚姻状况、文化程度、职业等)相关。通过量化这些生活习惯和饮食习惯的评价指标,然后计算与个人属性的协方差矩阵和相关系数,可以识别出各因素之间的相关性和相关程度。 问题三关注的是慢性病与生活习惯多个因素之间的关系。通过灰色关联分析法,我们可以量化吸烟、饮酒、饮食习惯、生活习惯、工作性质和运动等因素与常见慢性病的相关程度。接着,采用二分类 BP 神经网络构建模型,揭示这些因素与慢性病发病的关系。 至于问题四,我们基于问题三的结果,对居民进行分类,比如分为患病但饮食健康、患病且饮食不健康、不患病且饮食健康和不患病但饮食不健康四类。利用支持向量机(SVM)进行二分类,为每类居民提供定制的健康改善建议,包括膳食调整和运动方案。此外,通过灵敏度检验确保模型的稳定性和有效性。 总结来说,这篇论文运用了多种数学建模方法,包括主成分分析、模糊综合评判、灰色关联分析和神经网络,对城市居民的健康状况进行了深度研究。通过量化和分析饮食习惯,找出不合理之处;探究生活习惯和饮食习惯与个体特征的联系;接着,分析慢性病与生活习惯多因素的关联;为不同健康状态的居民提供个性化建议。这些方法的应用有助于理解影响城市居民健康的复杂因素,并为公共卫生政策的制定提供科学依据。关键词涉及的灰色关联分析法、主成分分析法、多目标模糊综合评判法和二分类 BP 神经网络,都是解决此类问题的关键工具,它们的结合使用展示了数学建模在解决实际问题中的强大能力。
2024-08-27 10:18:30 1.29MB 毕业设计
1
C++游戏入门,有源码。 Visual C++游戏开发经典案例详解 源代码
2024-08-27 01:01:01 12.34MB
1
php源码 此源码是一款视频网站系统,你可以用这个来快速搭建自己的视频网站,安装简单、界面简洁、易于使用。用户可在网站上面注册登陆上传视频、发布评论与收藏视频,系统带护眼模式,有利于保护眼睛,与此同时提供了后台管理,管理员可以进行网站名称,logo等设置。网站采用响应式设计,因此不论你在什么设备浏览网站,都有非常好的体验。 安装说明: 第一步:安装网站 (需要宝塔+apache环境,最好PHP5.5) 1、导入数据库文件夹里面的数据库文件: 2、将PHP文件夹里面的文件全部上传网站根目录 3、修改config.php文件里面的数据库信息和域名 4、完成默认账号密码是 admin/admin 第二步:生成APP 1、安装Android Studio软件,Android Studio软件和安装视频教程下载地址https://yunpan.360.cn/surl_yQ7tcLrHiRy (提取码:6776) 2、将APP源码文件夹里面的文件夹复制到桌面,在按照视频教程生成APP
2024-08-26 16:09:09 153.44MB android ffmpeg
1
bln128 椭圆曲线 256位模乘算子 verilogHDL 源代码。全流水线架构,流水级数为40个CLK。DSP48资源使用量180个左右。
2024-08-26 15:50:13 21KB
1
opengl 超级宝典 第五版 源代码 opengl 超级宝典 第五版 源代码 opengl 超级宝典 第五版 源代码
2024-08-26 14:46:44 82.93MB opengl 超级宝典
1
基于Spring Boot实现的餐厅点餐微信小程序,为顾客提供了一种全新的、便捷的用餐体验。以下是其主要功能描述: 菜品浏览与搜索:小程序首页展示餐厅的各类菜品,用户可以浏览详细的菜品信息,包括图片、价格、口味等。同时,支持关键词搜索,快速找到心仪的菜品。 购物车与点餐:用户可以将想点的菜品加入购物车,进行数量的选择和调整。完成选择后,一键下单,简单方便。 订单管理与支付:用户可以随时查看自己的订单状态,包括待支付、已支付、已完成等。支持多种支付方式,确保支付过程安全快捷。 会员系统与优惠:小程序支持会员注册与登录,会员可以享受更多的优惠和特权,如积分兑换、会员折扣等。 餐厅信息与导航:展示餐厅的详细信息,如地址、联系电话、营业时间等。同时,提供地图导航功能,帮助用户快速找到餐厅位置。 评价与建议:用户可以对餐厅的菜品、服务等进行评价,分享自己的用餐体验。同时,可以提出宝贵的建议,帮助餐厅改进服务质量。 消息通知与提醒:小程序会实时推送订单状态更新、优惠活动等信息,确保用户不会错过任何重要通知。 综上所述,基于Spring Boot实现的餐厅点餐微信小程序通过菜品浏览、购物车点餐、订单管理、会员优惠、餐厅信息、评价建议及消息通知等功能,为顾客提供了一个便捷、高效、个性化的用餐体验。
2024-08-26 12:17:42 13.64MB 点餐小程序 springboot
1