spss结课论文
2022-05-05 09:04:49 1.33MB 文档资料 spss结课论文
SPSS插件,应用于调节效应分析,基于OLS分析,只允许1个自变量、1个调节变量、1个因变量,协变量不限。可允许自变量或者调节变量为二次项,可允许自动中心化与标准化,可选择自动化的简单斜率,可选择进行分层回归。
2022-05-03 20:44:38 130KB SPSS 调节效应 二次效应 曲线调节
1
频率 频率的目标是以SPSS和SAS用户熟悉的格式提供来自SPSS,SAS和其他数据文件的快速简便的频率表。 如果适用,将使用变量标签和值标签生成频率。 特征 只需一行代码即可轻松查看整个数据集 包括标签属性中包含的类别,即使数据集中存在0个个案 检查不适用和空白案例以检查所有丢失的数据 用户缺失的变量可以在缺失类别中报告 允许为字符串和数字类添加标签 禁止打印很长的表-默认为大写和小写(可以使用“最大行数”选项更改) 支持外国和避风港包裹的标签约定 安装 您可以使用以下方法从GitHub安装频率: # install.packages("devtools") devtools :: install_github( " wilcoxa/frequency " ) 例子 使用外语: library( frequency ) library( foreign ) dat <- read
2022-05-02 22:37:18 1.7MB r spss sas labels
1
accidents.sav 该假设数据文件涉及某保险公司,该公司正在研究给定区域内汽车事故的年龄和性别风险因子。每个个案对应一个年龄类别和性别类别的交叉分类。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:16 843B R spss
1
adl.sav 该假设数据文件涉及在确定针对脑卒中患者的建议治疗类型的优点方面的举措。医师将女性脑卒中患者随机分配到两组中的一组。第一组患者接受标准的物理治疗,而第二组患者则接受附加的情绪治疗。在进行治疗的三个月时间里,将为每个患者进行一般日常生活行为的能力评分并作为原始变量。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:16 3KB R spss
1
adratings.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:15 708B R spss
1
advert.sav 该假设数据文件涉及某零售商在检查广告支出与销售业绩之间的关系方面的举措。为此,他们收集了过去的销售数字以及相关的广告成本。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:15 893B R spss
1
AML survival.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:14 768B spss R
1
anorectic.sav 在研究厌食/暴食行为的标准症状参照时,研究人员1对 55 名已知存在进食障碍的青少年进行了调查。其中每名患者每年都将进行四次检查,因此总观测数为 220。在每次观测期间,将对这些患者按 16 种症状逐项评分。但 71 号和 76 号患者的症状得分均在时间点 2 缺失,47 号患者的症状得分在时间点 3 缺失,因此有效观测数为 217。 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:13 7KB R spss
1
Anxiety.sav 统计分析及模型构建中常用的数据集、使用数据集可以对模型和算法进行快速验证,而且如果能够得到经典测试数据有助于我们复现大佬(巨佬)们提供的算法模型、达到实战联系的目的、真正从原理上开启数据分析、而不是纸上谈兵; 纽约时报的一篇文章报道,数据科学家在挖掘出有价值的“金块”之前要花费50%到80%的时间在很多诸如收集数据和准备不规则的数据的普通任务上。混乱的数据是数据科学家工作流中典型的比较耗费时间的。 常用的数据集可以帮助我们快速实验模型算法,因为他们都是被处理过的优质数据;
2022-05-02 11:07:13 948B R spss
1