ChineseNRE 本项目使用 python 2.7 pytorch 0.4.0 中文实体关系抽取,对实体关系抽取不了解的可以先看。顺便求star~ 数据 中文实体关系抽取数据实在太难找了,data中是忘记在哪里找的人物关系数据集,一共11+1种关系,数据质量不太好,但也找不到其他的了。 (更新)中 ybNero 同学分享了一份数据集,大家可以去issues中查看~ 梅葆玥 梅兰芳 父母 坎坷经历梅葆玥之家庭合影1961年,梅兰芳先生病逝,葆玥、葆玖姐弟俩继承父亲的遗志,挑起了梅剧团的重担 数据格式为: 实体1 实体2 关系 句子。 虽然叫中文实体关系抽取,还是增加了一个英文数据集SemEval2010_task8,简单做了下数据处理,这是免费的公开数据集,其他的好像都要dollar了。。 训练 模型使用的是lstm+attention模型。特征使用词向量+位置向量。 训练前先运行dat
2021-05-19 16:14:00 23.37MB pytorch chinese attention relation-extraction
1
关系提取 卷积神经网络的关系分类 该代码是使用tensorflow的论文的实现。 ##算法 我几乎遵循了上面提到的论文中使用的技术,只调整了一些参数,例如字向量的尺寸,位置向量,优化函数等。 基本体系结构是卷积层,最大池和最终softamx层。 我们总是可以在输入层和最终的softmax层之间添加/删除conv和max-pool层的数目。 我只使用了1个转换和1个最大池。 ##文件 text_cnn.py-这是一个实现模型体系结构的类。 因此,它接受输入,包含所有层,例如conv2d (卷积层), max_pool等,这些层处理输入向量,最后根据每个类的预测给出输出。 data_hel
2021-05-08 22:19:07 1.27MB nlp spark tensorflow pyspark
1
基于法律裁判文书的事件撤除及其应用 简介 针对交通肇事案件的裁判文书进行事件要素移除,并在此基础上加入决策结果预测,案件相似度匹配等应用场景。 数据来源: 分词:基于pkuseg 词性标注:基于哈工大LTP / pkuseg 命名实体识别:基于BiLSTM-CRF 应用部分:包括判决结果的预测,案件相似度的比较等
2021-04-29 17:26:26 124.77MB nlp deep-learning word2vec event-extraction
1
OntoNotes-5.0-NER-BIO 这是CoNLL-2003格式的版本,带有OntoNotes 5.0版本NER的BIO标记方案。 此格式化的版本基于的说明以及在此存储库中创建的新脚本。 简单地说,名为“(Yuchen Zhang,Zhi Zhong,CoNLL 2013),提出了针对OntoNotes 5.0数据的Train-dev-split,并提供了将其转换为CoNLL 2012格式的脚本。 但是,结果不在BIO标记方案中,不能直接用于许多序列标记体系结构中,例如BLSTM-CRF。 此回购协议通过直接生成BIO格式简化了预处理,您可以在实验中使用它们。 步骤1:获取官方的O
1
血管中心线提取的代码
2021-04-19 18:01:52 1.33MB 血管
1
Distributed optical fiber Brillouin sensors detect the temperature and strain along a fiber according to the local Brillouin frequency shift (BFS), which is usually calculated by the measured Brillouin spectrum using Lorentzian curve fitting. In addition, cross-correlation, principal component analysis, and machine learning methods have been proposed for the more efficient extraction of BFS. However, existing methods only process the Brillouin spectrum individually, ignoring the correlation in t
2021-04-19 15:54:52 1.40MB
1
排名:6 队名:爆写规则一万行 成员: , , 环境环境 Ubuntu 18.04 的Python:3.6.5 火炬:1.1.0 CUDA:9.0 CUDNN:7.1.3 所需的包 我们将软件包用于主干BERT模型。 (请注意,原始在比赛期间已更新为 ,但出于稳定性考虑,我们选择使用旧版本。) 所需的Python软件包: fuzzywuzzy==0.17.0 numpy==1.17.0 torch==1.1.0 pytorch-pretrained-bert==0.6.2 tqdm==4.24.0 records 安装所需的python软件包的命令: pip install
1
信息提取中文 中文信息提取(包括命名实体识别,关系提取等)专注于最新的深度学习方法。 为了清楚起见,该项目有几个子任务,分别带有详细的README.md。 文件夹RE_BGRU_2ATT /中的详细信息 文件夹NER_IDCNN_CRF /中的详细信息 详情 参考
1
本文讲叙了如何根据采集来的肌电信号进行特征计算,并进行了不同种方法的计算和求值
2021-03-29 13:09:52 1.25MB EMG 特征提取
1
INE出品的SDN视频教程
2021-03-25 19:04:32 49.27MB SDN openstack 虚拟化
1