这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......
2023-03-27 13:09:25 340.34MB 八股文 面试 计算机 大厂
1
扫描版,带书签 《深入理解LINUX内核》,为中国电力出版社于2008年出版。作者DanielP. Bovet等。该书指导你对内核中使用的最重要的数据结构、算法和程序设计诀窍进行一次遍历。通过对表面特性的探究,作者给那些想知道自己机器工作原理的人提供了颇有价值的见解。书中讨论了Intel特有的重要性质。相关的代码片段被逐行剖析。然而,《深入理解LINUX内核》涵盖的不仅仅是代码的功能,它解释了Linux以自己的方式工作的理论基础。
2023-03-25 19:11:12 55.92MB linux c
1
新编MCS_51单片机应用设计课后答案,由哈尔滨工业大学出版社出版,希望对在读学生有所帮助!
2023-03-24 10:44:23 93KB 单片机
1
压缩包里面有QT Creator第三版高清PDF,该PDF包含了书签,同时该压缩包里面包含了书中讲解例子的源码,在阅读学习的过程中,结合源码更容易理解。
2023-03-23 20:34:15 98.41MB QT Creator PDF QT
1
高等数学(完整版 第三版 理工类)多媒体教学系统.exe
2023-03-23 14:57:08 406KB
1
Introduction to Algorithms Third Editio Contents I Foundations Introduction 3 1 The Role of Algorithms in Computing 5 1.1 Algorithms 5 1.2 Algorithms as a technology 11 2 Getting Started 16 2.1 Insertion sort 16 2.2 Analyzing algorithms 23 2.3 Designing algorithms 29 3 Growth of Functions 43 3.1 Asymptotic notation 43 3.2 Standard notations and common functions 53 4 Divide-and-Conquer 65 4.1 The maximum-subarray problem 68 4.2 Strassen’s algorithm for matrix multiplication 75 4.3 The substitution method for solving recurrences 83 4.4 The recursion-tree method for solving recurrences 88 4.5 The master method for solving recurrences 93 4.6 Proof of the master theorem 97 5 Probabilistic Analysis and Randomized Algorithms 114 5.1 The hiring problem 114 5.2 Indicator random variables 118 5.3 Randomized algorithms 122 5.4 Probabilistic analysis and further uses of indicator random variables 130 vi Contents II Sorting and Order Statistics Introduction 147 6Heapsort151 6.1 Heaps 151 6.2 Maintaining the heap property 154 6.3 Building a heap 156 6.4 The heapsort algorithm 159 6.5 Priority queues 162 7 Quicksort 170 7.1 Description of quicksort 170 7.2 Performance of quicksort 174 7.3 A randomized version of quicksort 179 7.4 Analysis of quicksort 180 8 Sorting in Linear Time 191 8.1 Lower bounds for sorting 191 8.2 Counting sort 194 8.3 Radix sort 197 8.4 Bucket sort 200 9 Medians and Order Statistics 213 9.1 Minimum and maximum 214 9.2 Selection in expected linear time 215 9.3 Selection in worst-case linear time 220 III Data Structures Introduction 229 10 Elementary Data Structures 232 10.1 Stacks and queues 232 10.2 Linked lists 236 10.3 Implementing pointers and objects 241 10.4 Representing rooted trees 246 11 Hash Tables 253 11.1 Direct-address tables 254 11.2 Hash tables 256 11.3 Hash functions 262 11.4 Open addressing 269 11.5 Perfect hashing 277 Contents vii 12 Binary Search Trees 286 12.1 What is a binary search tree? 286 12.2 Querying a binary search tree 289 12.3 Insertion and deletion 294 ? 12.4 Randomly built binary search trees 299 13 Red-Black Trees 308 13.1 Properties of red-black trees 308 13.2 Rotations 312 13.3 Insertion 315 13.4 Deletion 323 14 Augmenting Data Structures 339 14.1 Dynamic order statistics 339 14.2 How to augment a data structure 345 14.3 Interval trees 348 IV Advanced Design and Analysis Techniques Introduction 357 15 Dynamic Programming 359 15.1 Rod cutting 360 15.2 Matrix-chain multiplication 370 15.3 Elements of dynamic programming 378 15.4 Longest common subsequence 390 15.5 Optimal binary search trees 397 16 Greedy Algorithms 414 16.1 An activity-selection problem 415 16.2 Elements of the greedy strategy 423 16.3 Huffman codes 428 16.4 Matroids and greedy methods 437 16.5 A task-scheduling problem as a matroid 443 17 Amortized Analysis 451 17.1 Aggregate analysis 452 17.2 The accounting method 456 17.3 The potential method 459 17.4 Dynamic tables 463 viii Contents V Advanced Data Structures Introduction 481 18 B-Trees 484 18.1 Definition of B-trees 488 18.2 Basic operations on B-trees 491 18.3 Deleting a key from a B-tree 499 19 Fibonacci Heaps 505 19.1 Structure of Fibonacci heaps 507 19.2 Mergeable-heap operations 510 19.3 Decreasing a key and deleting a node 518 19.4 Bounding the maximum degree 523 20 van Emde Boas Trees 531 20.1 Preliminary approaches 532 20.2 A recursive structure 536 20.3 The van Emde Boas tree 545 21 Data Structures for Disjoint Sets 561 21.1 Disjoint-set operations 561 21.2 Linked-list representation of disjoint sets 564 21.3 Disjoint-set forests 568 21.4 Analysis of union by rank with path compression 573 VI Graph Algorithms Introduction 587 22 Elementary Graph Algorithms 589 22.1 Representations of graphs 589 22.2 Breadth-first search 594 22.3 Depth-first search 603 22.4 Topological sort 612 22.5 Strongly connected components 615 23 Minimum Spanning Trees 624 23.1 Growing a minimum spanning tree 625 23.2 The algorithms of Kruskal and Prim 631 Contents ix 24 Single-Source Shortest Paths 643 24.1 The Bellman-Ford algorithm 651 24.2 Single-source shortest paths in directed acyclic graphs 655 24.3 Dijkstra’s algorithm 658 24.4 Difference constraints and shortest paths 664 24.5 Proofs of shortest-paths properties 671 25 All-Pairs Shortest Paths 684 25.1 Shortest paths and matrix multiplication 686 25.2 The Floyd-Warshall algorithm 693 25.3 Johnson’s algorithm for sparse graphs 700 26 Maximum Flow 708 26.1 Flow networks 709 26.2 The Ford-Fulkerson method 714 26.3 Maximum bipartite matching 732 ? 26.4 Push-relabel algorithms 736 ? 26.5 The relabel-to-front algorithm 748 VII Selected Topics Introduction 769 27 Multithreaded Algorithms 772 27.1 The basics of dynamic multithreading 774 27.2 Multithreaded matrix multiplication 792 27.3 Multithreaded merge sort 797 28 Matrix Operations 813 28.1 Solving systems of linear equations 813 28.2 Inverting matrices 827 28.3 Symmetric positive-definite matrices and least-squares approximation 832 29 Linear Programming 843 29.1 Standard and slack forms 850 29.2 Formulating problems as linear programs 859 29.3 The simplex algorithm 864 29.4 Duality 879 29.5 The initial basic feasible solution 886 x Contents 30 Polynomials and the FFT 898 30.1 Representing polynomials 900 30.2 The DFT and FFT 906 30.3 Efficient FFT implementations 915 31 Number-Theoretic Algorithms 926 31.1 Elementary number-theoretic notions 927 31.2 Greatest common divisor 933 31.3 Modular arithmetic 939 31.4 Solving modular linear equations 946 31.5 The Chinese remainder theorem 950 31.6 Powers of an element 954 31.7 The RSA public-key cryptosystem 958 ? 31.8 Primality testing 965 ? 31.9 Integer factorization 975 32 String Matching 985 32.1 The naive string-matching algorithm 988 32.2 The Rabin-Karp algorithm 990 32.3 String matching with finite automata 995 ? 32.4 The Knuth-Morris-Pratt algorithm 1002 33 Computational Geometry 1014 33.1 Line-segment properties 1015 33.2 Determining whether any pair of segments intersects 1021 33.3 Finding the convex hull 1029 33.4 Finding the closest pair of points 1039 34 NP-Completeness 1048 34.1 Polynomial time 1053 34.2 Polynomial-time verification 1061 34.3 NP-completeness and reducibility 1067 34.4 NP-completeness proofs 1078 34.5 NP-complete problems 1086 35 Approximation Algorithms 1106 35.1 The vertex-cover problem 1108 35.2 The traveling-salesman problem 1111 35.3 The set-covering problem 1117 35.4 Randomization and linear programming 1123 35.5 The subset-sum problem 1128 Contents xi VIII Appendix: Mathematical Background Introduction 1143 A Summations 1145 A.1 Summation formulas and properties 1145 A.2 Bounding summations 1149 B Sets, Etc. 1158 B.1 Sets 1158 B.2 Relations 1163 B.3 Functions 1166 B.4 Graphs 1168 B.5 Trees 1173 C Counting and Probability 1183 C.1 Counting 1183 C.2 Probability 1189 C.3 Discrete random variables 1196 C.4 The geometric and binomial distributions 1201 ? C.5 The tails of the binomial distribution 1208 D Matrices 1217 D.1 Matrices and matrix operations 1217 D.2 Basic matrix properties 1222 Bibliography 1231 Index 1251
2023-03-22 22:02:25 5.39MB 算法导论 第三版 英文原版 高清文字版
1
在本文中,我们考虑了为连续时间非线性系统开发控制器的问题,其中控制该系统的方程式未知。 利用这些测量结果,提出了两个新的在线方案,这些方案通过两个基于自适应动态编程(ADP)的新实现方案来合成控制器,而无需为系统构建或假设系统模型。 为了避免对系统的先验知识的需求,引入了预补偿器以构造增强系统。 通过自适应动态规划求解相应的Hamilton-Jacobi-Bellman(HJB)方程,该方程由最小二乘技术,神经网络逼近器和策略迭代(PI)算法组成。 我们方法的主要思想是通过最小二乘技术对状态,状态导数和输入信息进行采样以更新神经网络的权重。 更新过程是在PI框架中实现的。 本文提出了两种新的实现方案。 最后,给出了几个例子来说明我们的方案的有效性。 (C)2014 ISA。 由Elsevier Ltd.出版。保留所有权利。
2023-03-21 17:45:57 901KB Model-free controller; Optimal control;
1
计算机网络第三版答案
2023-03-21 09:43:02 577KB 计算机网络 答案
1
Edited By Owen Burkinshaw, Indiana University-Purdue University, Indianapolis , U.S.A. By Charalambos Aliprantis, Purdue University, Indianapolis, U.S.A. Description With the success of its previous editions, Principles of Real Analysis, Third Edition, continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis. Audience Upper-level graduate or undergraduate students studying real analysis. Contents Fundamentals of Real Analysis Topology and Continuity The Theory of Measure The Lebesgue Integral Normed Spaces and Lp-Spaces Hilbert Spaces Special Topics in Integration Bibliography
2023-03-20 20:37:31 9.32MB 实分析 基础 教材
1
针对传统模型参数辨识方法和遗传算法用于模型参数辨识时的缺点,提出了一种基于微粒群优化(PSO)算法的模型参数辨识方法,利用PSO算法强大的优化能力,通过对算法的改进,将过程模型的每个参数作为微粒群体中的一个微粒,利用微粒群体在参数空间进行高效并行的搜索来获得过程模型的最佳参数值,可有效提高参数辨识的精度和效率。
2023-03-14 16:51:01 277KB 微粒群算法
1