针对网络安全态势感知问题,该文对多种已有态势感知方法进行比较和分析,提出了一种基于神经网络的网络安全态势感知方法。首先,设计了一种基于BP(backprop-agation)神经网络的网络安全态势评估方法。然后,为了解决态势要素与评估结果之间的不确定性及模糊性问题,提出了一种基于RBF(radicalbasisfunction)神经网络的网络安全态势预测方法,利用RBF神经网络找出网络态势值的非线性映射关系,采用自适应遗传算法对网络参数进行优化并感知网络安全态势。通过真实网络环境的实验验证了该文提出方法在
2024-04-30 14:41:14 2.14MB 自然科学 论文
1
基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统设计毕业源码案例设计
2024-04-30 13:48:38 4.21MB
1
基于MATLAB编程,用灰色神经网络的回归分析,代码完整,包含数据,有注释,方便扩展应用 1,如有疑问,不会运行,可以私信, 2,需要创新,或者修改可以扫描二维码联系博主, 3,本科及本科以上可以下载应用或者扩展, 4,内容不完全匹配要求或需求,可以联系博主扩展。
2024-04-29 21:41:37 15KB 神经网络 matlab 灰色神经网络
使用matlab建立bp神经网络回归预测,带完整代码、数据、测试结果、详细说明,读者可自行修改,后续会进行多种回归预测对比以及建立复杂神经网络
2024-04-29 19:46:43 195KB 神经网络 matlab
1
永磁同步电机滑模控制MATLAB/Simulink完整仿真模型
1
Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
【优化预测】蝙蝠算法优化BP神经网络预测【含Matlab源码 1379期】.zip
2024-04-28 19:09:04 66KB
1
基于神经网络的人脸不同角度识别Matlab仿真程序-Face_Angle_Neural_net.rar 数据库 forum17.jpg 训练结果 forum16.jpg 附件里含有: Matlab神经网络程序。 人脸数据库。
2024-04-25 21:39:06 3.58MB matlab
1
1. 线性回归数据集 2. 基于Pytorch实现线性回归/单层神经网络模型
2024-04-25 11:12:28 77KB pytorch pytorch 线性回归 神经网络
1
闪电战-火炬动物园中的贝叶斯层 BLiTZ是一个简单且可扩展的库,用于在PyTorch上创建贝叶斯神经网络层(基于“)。 通过使用BLiTZ图层和utils,您可以以不影响图层之间的交互的简单方式(例如,就像使用标准PyTorch一样)添加非证书并收集模型的复杂性成本。 通过使用我们的核心权重采样器类,您可以扩展和改进此库,从而以与PyTorch良好集成的方式为更大范围的图层添加不确定性。 也欢迎拉取请求。 我们的目标是使人们能够通过专注于他们的想法而不是硬编码部分来应用贝叶斯深度学习。 Rodamap: 为不同于正态的后验分布启用重新参数化。 指数 贝叶斯层的目的 贝叶斯层上的权重采样 有可能优化我们的可训练重量 的确,存在复杂度成本函数随其变量可微分的情况。 在第n个样本处获得整个成本函数 一些笔记和总结 引用 参考 安装 要安装BLiTZ,可以使用pip命令: pip
2024-04-24 16:41:44 136KB pytorch pytorch-tutorial pytorch-implementation
1