该存储库结合了来自三个来源qv的代码,以获取详细信息: Pack Publishing的第19章 斯科特·藤本的 马克斯·拉潘(Max Lapan)的 我使用此存储库的目标是将所有这些算法集中在一个地方,并具有简单,统一的命令行界面和最小的外部依存关系( , )。 快速开始 python3 td3-learn.py --target -500 这将在默认环境( )上运行算法,直到达到-500的平均奖励(在我的Asus Predator Helios笔记本电脑上大约需要23秒)。 程序完成后,您可以通过运行以下命令显示结果 python3 ac-test.py models/td3-Pendulum-v0-.dat 其中是奖励值。 如果您已安装 ,则可以通过运行以下命令可视化情节奖励 python3 ac-plot.py models/td3
2022-01-15 16:02:13 41KB Python
1
详细总结了如何在ubuntu16.04的基础上搭建深度强化学习mujoco的环境,可按照Openai的gym针对mujoco-py进行深度强化学习训练,解决了mujoco安装后,Ubuntu重启键盘鼠标失灵的情况。
1
maze_dqn 使用深度强化学习(DQN)解决迷宫任务
2022-01-06 09:45:12 18KB
1
本文利用 Gym 对仿真环境进行注册,对 OpenScope 进行功能性改造,引入 成都双流机场最新进近区域内的固定点数据,包括各个扇区参数、进离场航线数据、进 近区管辖范围数据等,设计了简单的进近区 ATC 管制环境。该环境包括独立的进场、离 场情景,充分考虑了各种复杂情况下的冲突。其次,针对不同空域的复杂程度设计了相 应的冲突场景,如航路上的交叉冲突以及对头冲突,进、离场时的对头冲突、超越冲突 等,构建完备的冲突集。为了降低模型的复杂度,假设航空器在转弯过程中不考虑最小 转弯半径的限制。最后,考虑到解脱动作的连续性以及智能体状态的复杂性,本文以保 障飞行安全为前提,对航空器解脱策略进行研究。通过构建的空中交通管制仿真环境实 现智能体之间的交互训练任务,设计了冲突解脱模型的奖励函数,采用深度强化学习中 经典算法 DDPG 进行解脱策略的学习。仿真实验结果表明该算法对于多种冲突环境均 能够搜索到较优的解脱策略,冲突解脱成功率达到 89% 以上,可以作为管制员进行冲 突解脱的参考方案之一。
为解决软件定义网络场景中,当前主流的基于启发式算法的QoS优化方案常因参数与网络场景不匹配出现性能下降的问题,提出了基于深度强化学习的软件定义网络QoS优化算法。首先将网络资源和状态信息统一到网络模型中,然后通过长短期记忆网络提升算法的流量感知能力,最后基于深度强化学习生成满足QoS目标的动态流量调度策略。实验结果表明,相对于现有算法,所提算法不但保证了端到端传输时延和分组丢失率,而且提高了22.7%的网络负载均衡程度,增加了8.2%的网络吞吐率。
1
Deep Reinforcement Learning深度强化学习Deep Reinforcement Learning, 2017
2021-12-30 14:55:59 3.41MB 深度强化学习
1
DeepQLearning.jl 如使用所述,DeepMind的Deep Q-Learning算法的Julia实现。 此代码仅实现基本算法。 它不包括卷积网络的代码。 但是,可以使用Mocha.jl轻松添加。 取而代之的是,它使用了更简单的单层神经网络。 有关原始 注意:此库已经过各种学习任务的测试,似乎可以正常运行,但尚未准备好供公众使用。 范例程式码 using DeepQLearning ... coming soon ... I hope :) ## Dependencies此库需要 。 ## Credits该库借鉴了的作品 执照 麻省理工学院
2021-12-29 16:55:27 6KB Julia
1
我们将深度Q-Learning成功背后的理念与持续的 动作域。我们提出了一种基于确定性模型的无模型算法 可以在连续动作空间上操作的策略梯度。使用 同样的学习算法,网络结构和超参数,我们的算法 稳健地解决20多个模拟物理任务,包括经典 如手推车摆动、灵巧操作、腿部运动等问题 还有开车。我们的算法能够找到性能具有竞争力的策略 与那些发现的规划算法完全访问的动态 域及其衍生物的。我们进一步证明,对于许多 任务算法可以“端到端”学习策略:直接从原始像素输入。
2021-12-29 13:02:26 668KB 深度学习 强化学习 机器人 运动控制
1
自动驾驶中的深度强化学习 最适合离散操作:4名工人,学习率1e-4 无法使其在连续动作空间中正常工作; 它产生的动作出了问题 A3C创意 总览 人工神经网络的架构
2021-12-27 23:11:40 224.81MB python multi-threading deep-neural-networks latex
1
强化学习范式原则上允许复杂行为 直接从简单的奖励信号中学习。然而,在实践中,情况确实如此 常见的手工设计奖励功能,以鼓励特定的 解决方案,或从演示数据中导出。本文探讨了如何丰富 环境有助于促进复杂行为的学习。明确地 我们在不同的环境环境中培训代理人,并发现这鼓励了他们 在一系列任务中表现良好的稳健行为的出现。 我们为运动演示了这一原则——众所周知的行为 他们对奖励选择的敏感度。我们在一个平台上训练几个模拟物体 使用一个简单的奖励功能,可以设置各种具有挑战性的地形和障碍 基于向前的进展。使用一种新的可伸缩策略梯度变体 强化学习,我们的特工可以根据需要学习跑、跳、蹲和转身 在没有明确的基于奖励的指导的环境下。对……的视觉描绘 学习行为的要点可以在本视频中查看。
2021-12-24 12:08:07 2.23MB 深度学习 强化学习 机器人 运动控制
1