电子科技大学机器学习课程内容总结,方便考试,仅供参考,祝大家考试顺利!
2024-04-25 14:52:22 1008KB 电子科技大学 机器学习
1
基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本界面 摄像头Frame中检测虫体数目,并在界面中显示标出 学习昆虫图像特征的提取,参考论文中提出的几个特征量 提取特征量并进行保存 按照神经网络方法搭建训练模型 搭建了线性SVM分类训练器 将特征提取和UI界面建立连接,实现拍照和预测判断一体 【机器学习训练算法】 基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本界面 摄像头Frame中检测虫体数目,并在界面中显示标出 学习昆虫图像特征的提取,参考论文中提出的几个特征量 提取特征量并进行保存 按照神经网络方法搭建训练模型 搭建了线性SVM分类训练器 将特征提取和UI界面建立连接,实现拍照和预测判断一体 【机器学习训练算法】基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本
2024-04-25 13:53:37 14.67MB python 图像处理 机器学习
1.本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。 2.项目运行环境:需要Python 3.6及以上配置。 3.项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐。选用GBDT建立模型,GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮的残差基础上进行训练;采用GBDT模型进行预测,输入当前天气、温度、风力风向、日期(是否是节假日、星期几)和时间即可得出当前客流量;当前客流量在后续预测排队时做一系列操作即可转换为排队时间;通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划;系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。 4.博客:https://blog.csdn.net/qq_31136513/article/details/133018114
2024-04-24 18:32:16 10.68MB 机器学习 python GBDT 最优路径
1
python
2024-04-22 16:09:33 83.65MB python 机器学习
1
图神经网络的初认识及代码
1
The 1st Place Solution of the Google Landmark 2019 Retrieval Challenge and the 3rd Place Solution of the Recognition Challenge.
2024-04-20 14:15:44 381KB Python开发-机器学习
1
在这一背景下,市面上出现了很多面向初学者的书,这些书往往只包含机器学习的基本数学式。与此同时,也有很多非常好的专业书。但遗憾的是,印象中很少有适合初学者在学习专
2024-04-19 11:16:53 16.14MB
1
ARIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。本章将介绍一个实战案例,利用Python编程语言实现了ARIMA模型并进行预测。通过这个案例,我们将深入了解ARIMA模型的构建过程和关键步骤,并学习如何使用Python中的相关库来进行模型训练和预测。在案例中,我们将使用一组客服的接线量数据作为实验对象。通过分析这些数据,我们将探索数据的特征和规律,进行平稳性检验和差分操作,然后通过自相关和偏自相关图来选择合适的ARIMA模型参数。RIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。在本篇博客中,我们将深入探讨ARIMA模型的实战应用,并通过Python进行模型的实现和分析。 我们的实战案例基于一组客服接线量的数据。首先,我们对数据进行了详细的探索性分析,以揭示其内在的时间序列特性。对于非平稳的数据,我们使用差分操作使其平稳,以便进行后续的建模和预测。 在模型参数的选择上,我们使用了自相关图(ACF)和偏自相关图(PACF)来帮助确定ARIMA
2024-04-16 10:53:43 5KB 机器学习 ARIMA
1
1. Matlab实现粒子群优化算法优化BP神经网络的数据分类预测(完整源码和数据) 2. 多变量输入,单变量输出(类别),数据分类预测 3. 评价指标包括:准确率 和 混淆矩阵 4. 包括拟合效果图 和 混淆矩阵 5. Excel数据,要求 Matlab 2018B及以上版本
2024-04-15 09:42:39 74KB 机器学习 神经网络 粒子群算法 Matlab
1
本项目是作者预演的方案,内含源码和数据集。可以作为demo直接使用。
2024-04-14 17:19:30 159KB 机器学习 深度学习