机器学习是人工智能及模式识别领域的共同研究热点,其理论和方法已被广泛应用于解决工程应用和科学领域的复杂问题。2010年的图灵奖获得者为哈佛大学的Leslie vlliant教授,其获奖工作之一是建立了概率近似正确(Probably Approximate Correct,PAC)学习理论;2011年的图灵奖获得者为加州大学洛杉矶分校的Judea Pearll教授,其主要贡献为建立了以概率统计为理论基础的人工智能方法。这些研究成果都促进了机器学习的发展和繁荣。 [2] 机器学习是研究怎样使用计算机模拟或实现人类学习活动的科学,是人工智能中最具智能特征,最前沿的研究领域之一。自20世纪80年代以来,机器学习作为实现人工智能的途径,在人工智能界引起了广泛的兴趣,特别是近十几年来,机器学习领域的研究工作发展很快,它已成为人工智能的重要课题之一。机器学习不仅在基于知识的系统中得到应用,而且在自然语言理解、非单调推理、机器视觉、模式识别等许多领域也得到了广泛应用。一个系统是否具有学习能力已成为是否具有“智能”的一个标志。机器学习的研究主要分为两类研究方向:第一类是传统机器学习的研究,该类研究主要是研究学习机制,注重探索模拟人的学习机制;第二类是大数据环境下机器学习的研究,该类研究主要是研究如何有效利用信息,注重从巨量数据中获取隐藏的、有效的、可理解的知识。 [2] 机器学习历经70年的曲折发展,以深度学习为代表借鉴人脑的多分层结构、神经元的连接交互信息的逐层分析处理机制,自适应、自学习的强大并行信息处理能力,在很多方面收获了突破性进展,其中最有代表性的是图像识别领域。
2025-04-22 08:57:52 23KB 机器学习
1
医疗图像分割数据集synapse
2025-04-21 16:08:14 953.46MB 数据集 医疗图像 深度学习 图像分割
1
《人工智能之机器学习入门到实战》是一本专为初学者设计的教材,旨在引领读者从基础知识出发,逐步深入到实际应用领域,全面了解并掌握机器学习的核心概念和技术。这本书覆盖了从理论到实践的广泛话题,是理解人工智能领域中机器学习部分的宝贵资源。 在机器学习领域,首先我们需要理解什么是机器学习。机器学习是人工智能的一个分支,它让计算机系统通过经验学习和改进,而无需明确编程。这个过程涉及到数据的收集、预处理、模型训练以及模型的评估和优化。机器学习的主要类型包括监督学习、无监督学习和强化学习。 监督学习是机器学习中最常见的一种,它需要已标记的数据来训练模型。例如,在分类问题中,我们会提供输入特征和对应的正确输出,模型会尝试找到输入与输出之间的关系。常见的监督学习算法有线性回归、逻辑回归、支持向量机(SVM)以及各种类型的神经网络。 无监督学习则没有明确的输出标签,它的目标是发现数据中的内在结构或模式。聚类是无监督学习的一个典型例子,如K-means算法,它将数据分组成多个相似的群体。降维技术,如主成分分析(PCA),也是无监督学习的一部分,用于减少数据的复杂性,同时保留关键信息。 强化学习是一种通过与环境互动来学习的方法,机器会根据其行为的结果不断调整策略。经典的例子是游戏AI,如AlphaGo,它通过与自身对弈学习提升棋艺。 在《人工智能之机器学习入门到实战》中,"machine_learning_in_action-main"可能指的是书中的主要章节或案例,可能涵盖了数据预处理(如缺失值处理、异常值检测和特征缩放)、模型选择(比如交叉验证和网格搜索)、模型评估(如准确率、召回率、F1分数和ROC曲线)以及调参技巧(如随机搜索和贝叶斯优化)等重要内容。 此外,书中还会介绍一些流行的机器学习库,如Python的Scikit-Learn、TensorFlow和PyTorch,这些库提供了丰富的工具和函数,简化了机器学习项目的实现。读者将学习如何使用这些库构建和训练模型,并进行预测。 这本电子书将带领读者从理论基础到实践项目,涵盖机器学习的各个关键环节,是希望进入人工智能领域的初学者的绝佳起点。通过深入阅读和实践,读者不仅可以理解机器学习的基本原理,还能具备实际解决问题的能力。
2025-04-21 15:41:16 2.29MB 人工智能 机器学习
1
内容概要:本文展示了基于 PyTorch 实现的一个深度学习网络,即集成了坐标注意力(CoordAtt)模块的 U-Net 网络,主要用于医疗影像或者卫星图片等高分辨率图像的分割任务中。文中定义了两种关键组件:CoordAtt 和 UNetWithCoordAtt。CoordAtt 是为了在水平和垂直维度引入空间注意力机制来增强特征提取能力而提出的一种改进方法。具体做法是通过对不同方向进行池化操作并用1x1卷积核调整通道数目与生成最终的注意权值。UNet部分则继承了传统的U形结构思想,在编码和解码过程中不断下采样获得抽象特征以及通过上采样的方式复原到原始尺寸;在每一次编码后的处理步骤和部分解码环节加入 CoordAtt,从而提高了网络捕捉长程依存关系的能力。最后还附有一个简单的测试函数来实例化对象并验证输出正确性。 适用人群:适用于有一定 PyTorch 使用经验的研究者或从业者,对于从事图像处理特别是需要做精确边界定位的应用领域的工作人员来说非常有价值。 使用场景及目标:该架构非常适合于对精度有较高要求但数据样本相对匮乏的情境之下。其目的是解决医学扫描、自动驾驶、遥感图像等领域面临的复杂背景噪声问题,在保证速度的同时提供更为精准的对象分割。 其他说明:本文提供了详细的源代码和注释,有助于深入理解 U-Net 系列变体以及注意力机制的设计思路。同时由于采用模块化的搭建方式也很容易进行参数调优以适配不同的业务需求。
2025-04-21 13:48:25 4KB 深度学习 U-Net PyTorch 图像分割
1
内容概要:本文介绍了面向移动图像去噪任务的大规模数据集(Mobile Image Denoising Dataset, MIDD)及其高效的基线模型 SplitterNet。MIDD 数据集由超过40万对不同光线条件下拍摄的手机动态/静态照片构成,涉及20种不同传感器,并补充了用于精确模型评估的新测试集DPerview。SplitterNet 模型采用创新架构,在保证高精度同时实现了移动端高效推理速度(处理800万像素图片小于一秒),并在多种性能指标上超越先前解决方案。实验证明,训练后的模型在不同摄像头上的泛化能力尤为突出。 适合人群:研究者和技术开发人员,特别是从事图像去噪和深度学习应用于移动平台的研究人员及从业者。 使用场景及目标:本项目主要针对提高智能手机拍照质量的应用场合,旨在为研究人员提供丰富且高质量的真实世界图像样本以及高效的去噪模型,以改善各种环境光线下手机相机捕获的照片品质。具体应用目标涵盖快速在线去噪、多曝光融合增强等多个方面,最终使用户体验得到质变性的提升。
2025-04-21 13:17:07 9.49MB 图像处理 深度学习 移动计算
1
对于需要快速实现arcface网络进行如下操作的人群: 1、模型转ONNX 2、onnx转engine 3、基于python版本的tensorRT推理源码 4、基于C++版本的tensorRT推理源码 5、相对应的数据、推理模型一应俱全
2025-04-21 10:48:39 25.09MB 网络 网络 深度学习 python
1
这是一个与物流相关的数据集,主要来源于印度物流公司 Delhivery 的运营数据。该数据集在 Kaggle 上由用户 Santanu Kundu 提供,包含丰富的物流信息,可用于分析和优化物流配送过程。该数据集涵盖了 Delhivery 在物流配送中的详细记录,包括运输行程、路线类型、运输时间、实际与预估的配送时间、运输距离等信息。数据集中的关键字段包括:行程信息:如行程创建时间、行程唯一标识符、起始和结束地点等。运输类型:包括 Full Truck Load(FTL,整车运输)和 Carting(小车运输)两种主要方式。时间和距离:实际运输时间、预估时间(通过 OSRM 路由引擎计算)、实际距离和预估距离等。地理位置信息:起始和目的地的名称、代码、城市、州等,可用于分析区域物流活动。数据集特点 数据量丰富:数据集包含超过 15 万条行程记录,涵盖了 2018 年 9 月的部分物流数据。 多维度信息:不仅包含时间和距离信息,还涉及运输类型、区域分布等,为多维度分析提供了基础。 实际应用场景:数据来源于真实的物流运营,可用于研究物流效率、优化配送路线、分析区域物流活动等。
2025-04-21 09:57:31 8.72MB 机器学习 预测模型
1
CMU-MOSEI数据集是自然语言处理和人工智能领域的一个重要资源,主要用于情感分析的研究和应用。它是由卡内基梅隆大学(Carnegie Mellon University,简称CMU)的研究人员创建的,MOSEI是Multimodal Opinion, Sentiment, and Emotion Intensity的缩写,意味着该数据集包含了多模态的意见、情感和情感强度信息。 该数据集的独特之处在于它不仅包含了文本信息,还包括语音的音调、语速、强度等声音特征,以及视频中的面部表情和肢体动作等视觉信息。这种多模态的数据特性使得MOSEI成为研究者们进行深度学习和机器学习,特别是跨模态情感分析的理想选择。 MOSEI数据集覆盖了多种类型的情感表达,包括积极、消极、中性以及更细微的情绪差异。情感强度的量化也是其特色之一,数据集通过0到5的评分系统标记了情感的强度,使得研究者可以不仅仅研究情感的类别,还可以研究情感的强弱程度。 在数据集的构建过程中,研究人员录制了大量视频,然后邀请了专业的标注者对这些视频中的话语进行情感分析和评分。这个过程涉及到声音和视觉信号的自动检测以及语言内容的语义理解,对人工智能算法的识别能力和语义分析能力提出了挑战。 由于数据集的规模较大,并且涵盖了复杂的情感表达模式,它成为了人工智能领域内进行情感分析研究的重要基准数据集。研究者可以使用MOSEI进行单模态或多模态的情感分析任务,比如情感分类、情感强度预测、跨模态情感同步分析等。 使用MOSEI数据集进行研究时,研究者可以采用深度学习的最新技术,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、Transformer模型等,来处理和分析文本、音频和视频数据。此外,多模态学习方法如early fusion、late fusion、以及多模态融合网络等也被广泛应用于处理MOSEI数据集,以期达到更好的情感分析效果。 MOSEI数据集的推出,极大促进了自然语言处理、计算机视觉和语音处理等多个领域的交叉融合研究。它不仅为研究情感分析的学者提供了宝贵的资源,也为开发更加智能和人性化的交互系统奠定了基础。通过这些研究,未来的机器人和智能助手将更加理解用户的情感状态,并作出更合适的反应。 随着人工智能技术的不断进步,CMU-MOSEI数据集也在不断更新和扩充,其在情感分析领域的重要性日益凸显,成为了推动该领域研究不断向前发展的关键力量。通过这个数据集,研究者们可以不断探索新的算法,以期达到更准确、更快速的情感识别和分析。
2025-04-21 08:03:56 107.76MB NLP 人工智能 机器学习 情感分析
1
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性。随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究。 【细粒度图像分类】是图像识别领域的一个子任务,主要目标是区分同一类别下的不同亚类别,例如区分不同种类的鸟类或汽车型号。由于这些亚类别之间具有高度的相似性和细微的差异,使得此类任务相比传统的粗粒度图像分类更具挑战性。细粒度图像分类在实际应用中有着广泛的需求,如生物多样性研究、自动驾驶车辆识别、安防监控等。 【深度学习】在解决细粒度图像分类问题上展现出优越性,通过构建深层神经网络,如**卷积神经网络(CNN)**,能够自动学习和提取多层次的特征,从而更好地捕捉图像中的微小细节。CNN的多层结构能够逐渐从低级特征(如边缘、颜色)进化到高级特征(如物体结构、纹理),这对于区分细粒度类别的关键特征至关重要。 **基于强监督的细粒度图像分类**方法通常需要大量的带有精确位置标注(如关键点或部分边界框)的数据进行训练。这类方法通过定位对象的局部特征来提高分类准确性,如Part-Based CNN、Attention机制等。这些模型在学习过程中考虑了物体的不同部位,强化了对关键部位特征的学习。 **弱监督的细粒度图像分类**则相对较为宽松,仅需类别标签,不需精确的位置信息。这通常通过利用数据增强、自注意力机制或者无监督学习策略来挖掘潜在的局部特征。尽管缺乏精确的标注,但这些方法仍能取得不错的效果。 **YOLO(You Only Look Once)**是一种实时目标检测系统,虽然最初设计用于通用物体检测,但已被扩展应用于细粒度图像识别。YOLO通过单个神经网络同时预测边界框和类别概率,对于快速识别细粒度图像的特定部位有优势。 **多尺度CNN**考虑了不同尺度下的信息,适应了细粒度图像中对象可能出现在不同大小的情况。通过多尺度输入或金字塔结构,网络可以捕捉到不同分辨率的细节,提高分类精度。 **生成对抗网络(GAN)**在细粒度图像分类中的应用主要体现在数据增强和特征学习。GAN可以生成新的训练样本,帮助模型学习更多的多样性和复杂性,同时,通过对抗性训练,可以学习到更鲁棒的表示。 细粒度图像分类的**数据增强**方法,如旋转、平移、缩放等,有助于扩大训练集并增强模型的泛化能力。而针对复杂场景,不同的识别方法,如基于关系建模、多任务学习等,可以根据场景特性选择最优策略。 当前的研究趋势和挑战包括:开发更有效的特征表示方法、减少对大量标注数据的依赖、提高模型的解释性以及在有限计算资源下的实时性能优化。未来的细粒度图像分类研究将继续深入探究深度学习的潜力,以应对更多变和复杂的识别任务。
2025-04-20 23:25:45 2.3MB 图像分类
1
"大数据背景下微博文本情感分析研究——基于Python实现情感词典与机器学习算法(LSTM、SVM)的支持向量机技术",大数据分析项目python--微博文本情感分析 研究思路:基于情感词典基于机器学习LSTM算法支持向量机(SVM) 包含内容:数据集文档代码 ,核心关键词:大数据分析项目; 微博文本情感分析; 情感词典; LSTM算法; 支持向量机(SVM); 数据集; 文档; 代码。,基于情感词典和机器学习算法的微博文本情感分析大数据项目 随着大数据时代的到来,社交媒体平台如微博上产生的海量文本数据成为研究者关注的热点。在众多研究方向中,文本情感分析因其能够识别、挖掘和分析大量文本中的主观信息而显得尤为重要。本研究旨在探讨如何通过Python实现的情感词典和机器学习算法来对微博文本进行情感分析。研究中所使用的机器学习算法主要包含长短期记忆网络(LSTM)和支持向量机(SVM),这两种算法在文本分析领域具有代表性且各有优势。 情感词典是情感分析的基础,它包含了大量具有情感倾向的词汇以及相应的极性值(正向或负向)。在微博文本情感分析中,通过对文本中词汇的情感倾向进行判断,并将这些词汇的极性值加权求和,从而确定整条微博的情感倾向。在实际应用中,情感词典需要不断更新和优化,以覆盖更多新兴词汇和网络流行语。 LSTM算法作为深度学习的一种,特别适合处理和预测时间序列数据,因此在处理时间上具有连续性的文本数据方面表现出色。LSTM能够有效地捕捉文本中长距离的依赖关系,这对于理解复杂语句中的情感表达至关重要。通过训练LSTM模型,可以建立微博文本和情感极性之间的映射关系,从而达到自动进行情感倾向分类的目的。 支持向量机(SVM)是一种二分类模型,其基本模型定义在特征空间上间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM在处理小规模数据集时表现出色,尤其在特征维度较高时仍能保持良好的性能。在微博文本情感分析中,SVM被用来对经过特征提取的文本数据进行情感倾向的分类。 本研究的数据集是通过爬虫技术从微博平台上抓取的大量微博文本,包括用户发布的内容、评论、转发等信息。这些数据经过清洗和预处理后,形成了适合进行情感分析的结构化数据集。数据集的构建是情感分析研究的基础,直接影响到后续模型训练的效果和分析结果的准确性。 研究文档详细记录了项目的研究思路、实现方法、实验过程以及结果分析。文档中不仅阐述了情感词典和机器学习算法的理论基础,还包括了如何应用这些技术来实现微博文本情感分析的详细步骤和关键代码。此外,文档中还探讨了在实际应用中可能遇到的问题和挑战,以及如何解决这些问题的策略。 代码部分则是本研究的实践工具,包含了构建情感词典、数据预处理、模型训练和评估等关键步骤的Python代码。代码部分不仅展示了如何将理论转化为实践,也提供了可复现的研究实例,方便其他研究者在本研究基础上进行进一步的探索和改进。 本研究通过构建情感词典和应用机器学习算法(LSTM和SVM),对微博文本进行情感分析,旨在通过大数据技术揭示微博文本中的情感倾向,为社交媒体内容分析、舆情监控和市场分析等领域提供有力的技术支持和应用参考。通过本研究,可以更好地理解和利用微博平台上的海量文本数据,为相关领域的问题提供解决方案。
2025-04-20 21:04:42 792KB xbox
1