Qt+OpenCV图像视觉框架全套源码上位机源码 工具可扩展。 除了opencv和相机sdk的dll,其它所有算法均无封装,可以根据自己需要补充自己的工具。 基于 Qt5.14.2 + VS2019 + OpenCV 开发实现,支持多相机多线程,每个工具都是单独的 DLL,主程序通过公用的接口访问以及加载各个工具。 包含涉及图像算法的工具、 逻辑工具、通讯工具和系统工具等工具。
2024-07-12 08:55:06 861KB opencv
1
针对矿物浮选过程中的一类回收率预测问题,提出了一种基于泡沫图像特征提取的预测算法。该算法采用最小二乘支持向量机(LSSVM)建立预测模型,通过施密特正交化对核矩阵进行简约,利用核偏最小二乘方法(KPLS)进行LSSVM参数辨识,以此构造具有稀疏性的LSSVM,有效地减小了算法的计算复杂度。为检验模型泛化及预测能力,为多个泡沫特征信息引入预测模型,采用泡沫图像特征提取方法提取泡沫颜色、速度、尺寸、承载量及破碎率特征。实验结果表明,该预测算法对浮选回收率具有良好预测效果。
2024-07-11 12:27:56 456KB
1
【特权同学】的FPGA图像采集及显示工程文件是一份涉及数字系统设计的重要资源,主要应用于FPGA(Field-Programmable Gate Array)开发领域。FPGA是一种可编程逻辑器件,能够根据用户的需求进行硬件配置,广泛应用于图像处理、通信、嵌入式系统等众多领域。这份工程文件将涵盖以下几个关键知识点: 1. **图像采集**:图像采集是系统的第一步,通常通过摄像头或其它传感器完成。在FPGA中,图像采集可能涉及到ADC(模拟到数字转换器),它将模拟信号转换为数字信号,以便FPGA可以处理。此外,还可能涉及同步时序控制,如像素时钟和行/场同步信号的生成。 2. **数据接口协议**:常见的图像传感器接口有MIPI CSI-2、LVDS、SPI、Parallel等。理解并实现这些接口对于从传感器获取数据至关重要。例如,MIPI CSI-2是一种高速串行接口,常用于手机和嵌入式设备中的图像传感器。 3. **图像处理**:FPGA在图像处理中可以执行多种操作,如色彩空间转换(RGB to YCbCr)、滤波(如均值滤波、中值滤波)、缩放、旋转等。这些处理可以通过并行计算能力高效地在FPGA中实现。 4. **显示接口**:处理后的图像需要通过某种显示接口传输到显示器。常见的显示接口有LVDS、HDMI、VGA等。在FPGA设计中,需要理解和实现这些接口的时序特性,确保图像数据正确无误地传输。 5. **存储器管理**:FPGA中的图像数据通常需要临时存储,这就涉及到BRAM(Block RAM)或分布式RAM的使用。合理分配和管理内存资源对于实现高效的数据流处理至关重要。 6. **VHDL/Verilog编程**:FPGA设计通常使用硬件描述语言(HDL)如VHDL或Verilog进行编程。掌握这两种语言的基本语法和高级特性,如状态机、数据并行处理、IP核复用等,是实现图像采集和显示的关键。 7. **IP核使用**:FPGA厂商通常提供预封装好的IP核,如ADC控制器、MIPI CSI-2接收器、HDMI发送器等。利用这些IP核可以快速构建复杂的系统,并减少设计错误。 8. **仿真与调试**:在实现设计前,通常需要使用硬件描述语言的仿真工具进行功能验证。而在硬件上运行时,可能还需要借助JTAG或其它调试工具进行在线调试。 9. **综合与配置**:完成设计后,需要使用Synthesis工具将HDL代码转化为逻辑门电路,并通过Place and Route工具布局布线,最后生成配置文件下载到FPGA。 10. **实时性能优化**:在满足功能需求的同时,还需要关注系统的实时性能,如图像处理速率、功耗和面积效率等,这可能需要不断迭代优化设计。 【特权同学】的FPGA图像采集及显示工程文件涵盖了从图像采集、处理到显示的全过程,是学习和实践FPGA开发,特别是图像处理应用的宝贵资料。通过深入研究和实践,开发者可以提升对FPGA硬件设计、接口协议、图像处理算法以及HDL编程的理解和应用能力。
2024-07-10 14:46:02 113.82MB fpga开发
1
基于深度学习的医疗图像分割综述 深度学习技术的崛起为医疗图像处理带来了革命性的变革,尤其是在图像分割领域。本次综述将对基于深度学习的医疗图像分割技术进行详细的介绍和分析。 医疗图像分割的应用 医疗图像分割技术可以帮助医生更准确地诊断病情,进行更精确的手术导航,以及开展其他重要的医学应用。医疗图像分割的应用包括: 1. 医学影像诊断:在医学影像诊断中,图像分割技术可以帮助医生将图像中的病变区域与正常组织区分开来,从而提高诊断的准确性。例如,CT扫描中的肿瘤分割,X光中的肺炎分割等。 2. 手术导航:在手术导航中,医生可以使用图像分割技术来创建3D模型,以便在手术过程中更好地理解患者内部的结构。这可以帮助医生更精确地定位病变区域,并提高手术效率。 3. 病理分析:在病理分析中,图像分割技术可以帮助医生将组织样本分成不同的区域,以便更好地理解疾病的发展过程和治疗效果。 深度学习模型概述 深度学习模型是基于深度学习的医疗图像分割技术的核心。常见的深度学习模型包括: 1. U-Net:U-Net是最常用的医疗图像分割模型之一。它是一个全卷积网络(FCN)的变种,具有一个收缩路径(编码器)和一个扩展路径(解码器),形状像字母“U”。U-Net能够捕获图像的上下文信息和位置信息,具有良好的空间一致性。 2. ResNet:ResNet是一种残差网络,通过引入残差块来帮助模型更好地学习和表示图像特征。ResNet的引入提高了模型的表达能力和泛化性能,使得模型能够更好地处理复杂的医疗图像数据。 3. EfficientNet:EfficientNet是一种新型的神经网络架构,旨在平衡模型的大小、性能和精度。它通过改变网络结构,使用更少的计算资源来达到更好的性能。在医疗图像分割中,EfficientNet具有广泛的应用前景。 4. Transformer:Transformer模型在自然语言处理领域取得了巨大成功。由于其具有全局信息交互的能力,Transformer也被引入到图像分割任务中。例如,ViT(Vision Transformer)就被应用于医疗图像分割任务中,取得了较好的效果。 训练和优化方法 训练和优化方法是基于深度学习的医疗图像分割技术的重要组成部分。常见的训练和优化方法包括: 1. 数据增强:由于医疗图像数据集通常较小,为了提高模型的泛化性能,通常会使用数据增强技术来扩充数据集。这包括旋转、缩放、裁剪、翻转等操作。 2. 损失函数:在训练过程中,损失函数被用来衡量模型的预测结果与真实标签之间的差距。常用的损失函数包括交叉熵损失、Dice损失、IoU损失等。 3. 优化算法:常见的优化算法包括随机梯度下降(SGD)、Adam、RMSProp等。这些算法可以帮助我们调整模型的参数,以最小化损失函数。 挑战和展望 基于深度学习的医疗图像分割技术仍然面临着许多挑战和挑战。例如,医疗图像数据集的获取和标注、模型的泛化性能、计算资源的限制等。然而,基于深度学习的医疗图像分割技术也展望了广泛的应用前景,例如医学影像诊断、手术导航、病理分析等。
2024-07-09 16:00:15 2.4MB
1
ISO 12233-2023 摄影--电子静态图像成像--分辨率和空间频率响应 ISO 12233-2023 摄影--电子静态图像成像--分辨率和空间频率响应 ISO 12233-2023 摄影--电子静态图像成像--分辨率和空间频率响应 ISO 12233-2023 摄影--电子静态图像成像--分辨率和空间频率响应 ISO 12233-2023 摄影--电子静态图像成像--分辨率和空间频率响应
2024-07-08 15:58:42 8.28MB 空间频率
AVEVA Marine(造船及海工设计系统)是一套完整的设计和生产应用系统,涵盖造船专业技术,结合企业工程、设计、通信以及可视化技术,通过使用单一项目模型,船体、船舾、工程以及设计实现跨专业的功能集成,为船舶企业提供一体化解决方案,需要的朋友欢迎前来下载体验! 软件介绍: AVEVA公司将Tribon的船体和海工行业广泛采用的PDMS进行系统的整合,推出了新一代的造船及海工设计系统AVEV
2024-07-08 10:53:58 3KB 图形图像
1
该资源主要是参考博客http://blog.csdn.net/eastmount/article/details/40627599中实现的android工程,主要包括3个功能,添加相框两种方法、圆角显示图片和图像合成。希望对大家有所帮助,免费资源仅供大家学习分享。By:Eastmount
2024-07-07 17:12:41 4.04MB android 图像合成 添加相框 圆角图片
1
【FPGA图像拼接融合1】是一个关于使用Field-Programmable Gate Array(FPGA)进行图像处理的项目,特别是图像拼接与融合的技术。在本文中,我们将深入探讨FPGA在这一领域的应用,以及如何利用它来实现高效、实时的图像处理。 FPGA是一种可编程逻辑器件,它允许用户根据需求定制硬件电路。相比于传统的CPU或GPU,FPGA在并行处理和低延迟方面具有显著优势,尤其适合于图像处理这类数据密集型任务。在图像拼接和融合中,FPGA可以快速处理大量像素信息,实现实时的图像分析和合成。 图像拼接是将多张视角相近的照片合并成一张大图的过程,常用于全景摄影。这个过程中涉及的关键技术包括图像对齐、特征匹配、透视校正等。在FPGA上实现这些功能,可以通过硬件描述语言(如VHDL或Verilog)编写定制的逻辑电路,以实现高速的图像处理流水线。 特征匹配是图像拼接中的关键步骤,FPGA可以加速SIFT(尺度不变特征变换)、SURF(加速稳健特征)或其他特征检测算法的执行。这些算法能识别出不同图像间的相似特征,为后续的图像对齐提供依据。 图像对齐则需要进行像素级别的映射,通常使用刚性变换或仿射变换。在FPGA上,可以设计专用的硬件模块来计算变换矩阵,并快速应用到每个像素上,确保拼接后的图像无缝衔接。 接下来是图像融合,它旨在结合多张图像的信息,提升图像的质量和细节。常见的融合方法有加权平均法、基于梯度的融合等。FPGA可以并行处理多个输入图像,实时计算权重并进行融合操作,提供优于软件实现的性能。 在FPGA-Build-main这个项目中,可能包含了实现上述功能的源代码、配置文件和测试平台。使用者可能需要一个开发环境,如Xilinx的Vivado或Intel的Quartus,来编译、仿真和下载代码到FPGA硬件上。此外,为了验证和调试,项目可能还提供了示例图像和测试脚本。 FPGA图像拼接融合项目展示了FPGA在高速图像处理中的潜力,通过硬件优化实现了图像处理算法的高效执行,对于需要实时处理大量图像的应用场景,如无人机航拍、机器人视觉等,具有重要价值。理解并掌握这样的技术,对于深入学习FPGA开发和图像处理领域都是至关重要的。
2024-07-07 11:54:54 31.59MB fpga开发
1
在图像处理领域,尤其是针对SAR(合成孔径雷达)图像,滤波是常见的操作,用于去除噪声、增强图像质量或提取特定特征。本压缩包包含的文件涉及到几种不同的滤波算法,包括中值滤波、均值滤波、Lee滤波、Kuan滤波、Frost滤波以及Gamma MAP滤波,这些都是在MATLAB2016a环境下实现的。下面将详细介绍这些滤波方法及其应用。 1. **中值滤波** (`zhongzhi.m`): 中值滤波是一种非线性的滤波方法,适用于消除椒盐噪声。它通过用像素邻域内的中值替换原始像素值来工作,对边缘保持良好,但可能平滑掉一些细节。 2. **均值滤波**: 均值滤波 (`junzhi.m`) 是一种线性滤波方法,通过对像素邻域内的像素取平均值来平滑图像,适用于高斯噪声的去除。然而,均值滤波可能会模糊图像边缘。 3. **Lee滤波** (`lee2.m`): Lee滤波是针对SAR图像设计的一种改进的自适应滤波器,它结合了中值滤波和均值滤波的优点,既考虑了像素邻域的局部统计特性,又能较好地保护边缘。 4. **Kuan滤波** (`kuan2.m`): Kuan滤波器也是为SAR图像设计的,主要针对斑点噪声。它通过估计背景和斑点噪声的统计特性,自适应地选择滤波权重,以达到更好的去噪效果。 5. **Frost滤波** (`frost2.m`): Frost滤波器是一种基于统计的自适应滤波方法,适用于随机噪声的去除。它利用像素邻域的统计信息,根据像素值的离散程度来调整滤波器的权重。 6. **Gamma MAP滤波** (`gammamap.m`): Gamma MAP滤波是概率模型下的图像恢复方法,它利用先验知识对图像进行建模,通过优化后验概率分布来恢复图像,适用于同时处理噪声和模糊问题。 在MATLAB2016a环境下,这些滤波算法可以通过编写相应的脚本来实现,通常会涉及到二维卷积、滤波核的定义、自适应阈值等技术。使用这些滤波器时,用户可以根据具体的应用需求和图像特点选择合适的滤波方法,以达到最佳的图像处理效果。 这些滤波算法在SAR图像处理中扮演着重要角色,它们各有优缺点,适用于不同类型的噪声和图像特性。通过比较和组合使用,可以更有效地提升图像质量和分析精度。在实际应用中,用户可能需要对滤波参数进行调整,以适应特定的图像环境和任务要求。
2024-07-05 16:21:46 5KB matlab 图像处理
1
在数字图像处理领域,边缘提取是一项至关重要的技术,它能够帮助我们识别图像中的物体边界,为后续的图像分析和理解提供关键信息。本主题聚焦于“数字图像边缘提取”,涉及傅里叶描述子的使用以及如何通过它们来复原图像边界,并进行二次取样和边缘检测。 傅里叶描述子是傅里叶变换在图像处理中的应用,它将图像从空间域转换到频域,以便更好地理解和分析图像的频率成分。傅里叶变换对于图像的特征提取非常有用,因为它可以揭示图像的高频和低频成分。高频部分通常对应于图像的边缘和细节,而低频部分则与图像的整体亮度和颜色变化有关。在图像复原过程中,傅里叶描述子可以帮助我们恢复或增强图像的边缘信息。 描述子的逆变换是将频域信息转换回空间域的过程,这个过程称为傅里叶逆变换。在边缘提取中,我们可能首先对图像进行傅里叶变换,然后对频域中的边缘相关频率进行操作,最后通过逆变换将处理后的频域图像转换回空间域,从而获得强化了边缘的图像。 接下来,对边界进行二次取样是一种常见的图像处理技术,它用于提高边缘检测的精度。二次取样通常指的是在原有的采样点基础上增加新的采样点,使得在边缘附近有更密集的采样点,这样可以更准确地捕捉到边缘的位置和形状。这种方法有助于减少边缘检测过程中的噪声影响,提升边缘轮廓的清晰度。 边缘检测算法是边缘提取的关键步骤,其目的是找到图像中像素强度显著变化的地方。常用的边缘检测算法包括Canny算子、Sobel算子、Prewitt算子等。这些算法通过计算图像梯度强度和方向来识别潜在的边缘位置,然后应用非极大值抑制来消除噪声引起的假边缘,并进行双阈值检测来确定最终的边缘。 在MATLAB环境中,我们可以利用内置的函数或者自定义代码来实现上述过程。例如,MATLAB提供了`imfilter`函数用于滤波,`fspecial`函数可以创建各种滤波器(如高斯滤波器、Sobel滤波器),`边缘检测`函数如`edge`可用于执行Canny边缘检测。通过组合这些工具,我们可以实现描述中提到的图像处理流程。 "数字图像边缘提取"是一个复杂而重要的主题,涉及到图像处理的核心技术,如傅里叶变换、频域分析、二次取样和边缘检测算法。通过掌握这些技术,我们可以有效地提取出图像中的关键信息,这对于图像分析、计算机视觉以及机器学习等领域都有深远的影响。
1