java7 hashmap源码 电商用户行为分析大数据平台 项目介绍 1.基于Spark开发的平台 2.需要有spark基础 3.有很多高级知识和设计模式 4.电商用户行为分析大数据平台(项目名称) 5.访问行为,购物行为,广告点击行为,对这些行为进行分析,使用大数据技术来帮助公司提升业绩。 6.主要的功能模块有用户session分析,页面单跳转化率统计,热门商品离线统计,广告流量实时统计等4个业务模块。 7.所使用的知识点是spark core,spark SQL,spark streaming等三个技术框架。 8.主要是数据倾斜,线上故障,性能调优,troubleshooting等经验。 9.使用模拟数据,希望达到的效果。 10.需求分析,方案设计,数据设计,编码实现,测试以及性能调优等环节。 模块简介 1、用户访问session分析:该模块主要是对用户访问session进行统计分析,包括session的聚合指标计算、按时间比例随机抽取session、获取每天点击、下单和购买排名前10的品类、并获取top10品类的点击量排名前10的session。该模块可以让产品经理、数据分析师以
2022-05-25 18:28:02 1.28MB 系统开源
1
入侵检测SVM 入侵检测算法-SVM和增强型SVM 作者 釜山国立大学金东敏 描述 这是一个通过使用svm和增强型svm检测网络入侵的python项目。 参考文献 [1]姚J.,赵S.,和范L.(2006年7月)。 用于入侵检测的增强型支持向量机模型。 在粗糙集和知识技术国际会议上(第538-543页)。 施普林格,柏林,海德堡。
2022-05-24 14:24:24 6KB python svm scikit-learn intrusion-detection
1
timeseries-lstm-keras:基于Jason Brownlee教程,在Keras中使用LSTM递归神经网络在Python中进行时间序列预测
2022-05-21 13:23:01 239KB python deep-learning tensorflow scikit-learn
1
学习卷积神经网络的面部反欺骗 “”论文的实现 结果 CASIA内测 原始数据集:或(密码:h5un) 规模 1.0 1.4 1.8 2.2 2.6 吝啬的 开发EER 0.1094 0.0408 0.0346 0.0339 0.0670 0.0571 测试HTER 0.1033 0.0492 0.0568 0.0675 0.0875 0.0729 测试EER 0.0923 0.0461 0.0578 0.0665 0.0790 0.0683
2022-05-21 11:13:34 12KB deep-learning mxnet face-antispoofing Python
1
论文部分翻译
2022-05-21 09:10:15 1.78MB 论文
1
学习PYTHON数据分析资料。数据科学速查表之Scikit-Learn
2022-05-19 16:47:30 536KB Scikit-Learn
1
在智能手机上使用递归神经网络(RNN),LSTM和Tensorflow进行人类活动识别 这是我硕士课程的项目,其中涉及使用无线传感器数据挖掘实验室(WISDM)的数据集为端到端系统构建机器学习模型,以使用智能手机加速度计,Tensorflow框架,递归神经网络预测人类的基本活动网络和多个长期短期存储单元(LSTM)堆栈,用于构建具有隐藏单元的深度网络。 训练模型后,将其保存并导出到android应用程序,并使用模型作为概念验证和UI界面进行预测,以使用文本语音API讲出结果。 处理: 清理并合并数据 根据模型要求,通过将每个序列活动的固定长度序列(200个)作为训练数据来进行数据预处理,以最大程度地提高模型的效率。 将数据分为训练(80%)和测试(20%)集。 通过堆叠带有2个完全连接的RNN的多层LSTM内存单元(这将解决消失的梯度问题)来构建一个深层网络。 使用Tensorflow框架构建整个模型,并创建占位符以供模型在端到端系统中访问。 创建最小化损失的损失函数,我们使用最小二乘误差(LSE)或L2范数,因为它将通过一个解决方案提供稳定的解决方案。 在整个训练期间,
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow pdf最新版本
2022-05-18 13:45:51 39.2MB Scikit-Learn Machine Learning TensorFlow
1
步态数据上的预测建模:使用LSTM将预测模型应用于时序步态数据的实验的最终结果和Python代码。 “重采样和时代测试”显示了一次优化模型参数两次的第一次迭代的结果。 “批次大小和神经元测试”显示第二次测试的结果,优化了其余两个参数
2022-05-16 15:22:17 300KB python numpy scikit-learn keras
1
In Learn Python 3 the Hard Way, Zed Shaw taught you the basics of Programming with Python 3. Now, in Learn More Python 3 the Hard Way, you’ll go far beyond the basics by working through 52 brilliantly crafted projects. Each one helps you build a key practical skill, combining demos to get you started and challenges to deepen your understanding. Zed then teaches you even more in 12 hours of online videos, where he shows you how to break, fix, and debug your code.
2022-05-13 20:58:39 2.61MB Python 学习 进阶
1