资源介绍:STM32与0.96寸四针脚IIC OLED例程 1. 简介 STM32是一个广泛应用于嵌入式系统中的微控制器系列,其高性能和丰富的外设使其成为开发各类项目的理想选择。0.96寸OLED显示屏是一种常见的小尺寸显示模块,通常使用I2C接口与主控芯片进行通信。本文将介绍如何在STM32微控制器上驱动0.96寸四针脚IIC OLED显示屏,包括必要的硬件连接、软件库以及示例代码。 2. 硬件需求 STM32微控制器开发板(如STM32F103C8T6,俗称“蓝色小板”) 0.96寸I2C接口OLED显示屏 杜邦线若干 3. 硬件连接 OLED显示屏通常有四个引脚: VCC: 电源正极(一般连接3.3V或5V) GND: 电源负极 SDA: I2C数据线 SCL: I2C时钟线 将OLED显示屏连接到STM32开发板: VCC接STM32的3.3V GND接STM32的GND SDA接STM32的I2C数据线(如PB7) SCL接STM32的I2C时钟线(如PB6) 4. 软件需求 STM32CubeMX:用于生成STM32的初始化代码 Keil MDK或其他ARM开发环境:
2024-08-28 21:48:22 9KB stm32 OLED
1
Modbus协议栈是一种广泛应用于工业自动化领域的通信协议,它允许设备之间进行数据交换。这个"最全的Modbus协议栈源码"包含了实现Modbus协议各种传输模式的完整代码,包括RTU(远程终端单元)、ASCII(美国标准代码交换信息)、TCP/IP、UDP以及在TCP和UDP上的RTU封装。 1. **Modbus RTU**:RTU模式是Modbus协议的一种高效形式,适用于串行通信。它使用二进制数据格式,并且在数据帧之间插入固定的校验和,确保数据传输的正确性。RTU模式下,每个Modbus报文由地址、功能码、数据和CRC校验组成。 2. **Modbus ASCII**:与RTU相比,ASCII模式使用ASCII字符编码数据,因此易于阅读但传输效率较低。每个ASCII报文在开始和结束时有特定的字符标记,并且每个字节的数据都用两个ASCII字符表示。 3. **Modbus TCP/IP**:TCP/IP模式是Modbus在以太网环境中的应用,它使用TCP协议作为传输层,保证了数据的可靠传输。TCP模式的Modbus报文在TCP数据段内,不需要额外的帧结构或字符编码。 4. **Modbus UDP**:UDP(用户数据报协议)是一种无连接的协议,适合于实时性要求较高的应用。Modbus UDP同样将Modbus报文封装在UDP数据报中,但不提供像TCP那样的确认和重传机制。 5. **RTU Over TCP/UDP**:这些模式是为了解决串行设备通过网络进行通信的问题。它们将RTU格式的Modbus报文封装在TCP或UDP数据包中,使得串行设备可以通过IP网络进行通信。 源码中可能包含以下组件: - **主站(Master)和从站(Slave)实现**:主站通常发起请求,从站响应。源码会包含处理这两种角色的函数和类。 - **错误处理和校验机制**:确保数据传输的准确性和完整性。 - **网络I/O模块**:用于处理TCP/IP和UDP连接,发送和接收数据。 - **协议解析器**:解析接收到的Modbus报文,执行相应的功能码操作,如读取寄存器、写入寄存器等。 - **数据模型**:定义Modbus寄存器和线圈的数据结构,以及如何与实际设备或应用程序的内部状态交互。 - **配置和设置接口**:允许用户配置Modbus协议栈的参数,如波特率、地址、超时时间等。 源码学习可以深入理解Modbus协议的工作原理,掌握如何在实际项目中应用和扩展Modbus通信,这对于工业自动化系统开发者来说非常有价值。通过分析和修改这些源码,开发者可以定制自己的Modbus通信库,满足特定项目的需求,例如优化性能、增加新功能或适应特定硬件平台。
2024-08-28 16:12:45 7.13MB Modbus
1
STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。它具有丰富的外设接口,包括SPI、I2C、USB等,能够方便地与各种外围设备进行通信。本话题将深入探讨如何使用STM32F103读取SD卡中的数据,这对于开发存储和读取大量数据的应用至关重要。 要实现STM32F103与SD卡的通信,需要利用到SD卡的SPI协议。SPI(Serial Peripheral Interface)是一种同步串行接口,可以实现单主机多从机的通信模式,适合于低速外设的数据传输。在STM32中,通常会使用SPI1或SPI2来连接SD卡。 1. **硬件连接**:连接STM32的SPI引脚到SD卡接口,包括SCK(时钟)、MISO(主输入/从输出)、MOSI(主输出/从输入)和NSS(片选信号)。同时,不要忘记SD卡的电源和CS(Chip Select)信号线。 2. **初始化SD卡**:在软件层面上,首先需要初始化SD卡。这包括发送CMD0复位SD卡,然后发送CMD8检测SD卡版本,接着执行ACMD41(APPEND Command 41)来使SD卡进入传输模式。在这个过程中,需要注意CMD命令的响应状态以及正确设置SD卡的电压范围。 3. **建立块地址映射**:SD卡使用块地址(Block Addressing)而不是字节地址,因此在读取数据前,需要将逻辑块地址转换为物理块地址。 4. **读取数据**:使用CMD17(READ_SINGLE_BLOCK)命令读取单个数据块,或者使用CMD18(READ_MULTIPLE_BLOCK)连续读取多个数据块。在发送CMD命令后,STM32需要通过SPI接口接收返回的数据,通常是512字节的一块数据。 5. **数据处理**:接收到的数据通常以二进制格式存储,需要根据应用需求进行解码和处理。例如,如果是读取文本文件,可能需要将二进制数据转化为字符数组并解析成文本。 6. **错误处理**:在读取过程中可能会遇到各种错误,如命令响应错误、CRC校验失败等,因此需要设置适当的错误检查机制,并在出现错误时进行恢复操作。 7. **库的使用**:在提供的`Libraries`文件夹中,可能包含了用于SD卡读写的库函数,比如STM32 HAL库或LL库。这些库简化了与SD卡交互的复杂性,提供了一套标准化的API接口供开发者调用。 8. **工程配置**:`Project`文件可能包含Keil MDK工程配置,如包含头文件、设置启动文件、链接器选项等。`User`文件夹可能包含用户代码,如初始化函数、读写函数等。`Listing`文件夹可能包含编译后的汇编代码。 9. **文档参考**:`Doc`文件夹下的文档可能提供了关于如何使用这些库和API的详细说明,帮助开发者更好地理解代码逻辑和实现步骤。 通过以上步骤,STM32F103能够成功地与SD卡进行通信并读取其中的数据。这是一项基础但至关重要的技能,对于构建涉及数据存储和读取的嵌入式系统项目非常有用。在实际应用中,还需要考虑数据的完整性、安全性和效率优化等问题。
2024-08-28 14:00:39 7.53MB STM32
1
代码可以在linux下编译,然后通过串口方式给STM32或者LPC进行ISP升级
2024-08-28 11:12:48 458KB linux stm32
1
在本文中,我们将深入探讨如何基于STM32F429微控制器(MCU)的以太网接口实现TFTP(Trivial File Transfer Protocol)在线升级功能。STM32F429是一款高性能的32位微控制器,广泛应用于嵌入式系统,尤其在实时控制和数字信号处理方面表现优异。其集成的以太网接口为网络通信提供了便利,而TFTP则是一种简单、易于实现的文件传输协议,常用于设备固件更新。 我们需要了解STM32F429的硬件配置。STM32F429IGT6具有多个外设接口,其中包括一个以太网MAC(Media Access Controller),它可以直接与外部的物理层芯片连接,如LAN8720。LAN8720是一个独立的以太网PHY芯片,负责处理物理层的通信,包括发送和接收数据包。确保STM32F429与LAN8720之间的通信通过MII(Media Independent Interface)或RMII(Reduced Media Independent Interface)正确配置是实现网络功能的关键步骤。 接着,我们关注TFTP客户端的实现。在STM32F429上,可以使用标准库或者HAL(Hardware Abstraction Layer)库来驱动以太网接口,并且需要编写TFTP客户端的软件模块。TFTP客户端的主要任务是发送读请求(RRQ)到服务器,接收固件文件,并将其保存到MCU的存储器中。这通常涉及到TCP/IP协议栈的实现,包括IP、UDP和TFTP协议的处理。开发者需要理解和实现这些协议的报文格式和交互流程。 TFTP协议非常简单,只支持两种操作:读(Read)和写(Write)。在这个场景下,我们关注的是读操作,因为它是固件升级的过程。TFTP客户端会向服务器发送RRQ报文,包含要下载的文件名和选择的传输模式(通常是octet模式)。服务器收到请求后,会返回文件的数据块,客户端接收并校验数据,直到整个文件传输完毕。 为了测试TFTP客户端,我们可以使用像tftpd64这样的TFTP服务器软件。tftpd64是一个免费且开源的TFTP服务器,适用于Windows平台,它支持读写操作,方便进行固件升级的测试。 在实际应用中,还需要考虑固件更新的安全性和可靠性。例如,采用IAP(In-Application Programming)技术,使得固件更新可以在不影响现有程序执行的情况下完成。IAP允许STM32F429在运行时对特定的闪存区域进行编程,从而实现固件的热更新。此外,为了防止在升级过程中出现电源中断导致的系统不稳定,可以设计一个安全的恢复机制,如备份区域保存旧版本固件,或者实现断点续传功能。 基于STM32F429的TFTP在线升级涉及到硬件配置、TCP/IP协议栈的理解、TFTP客户端软件实现以及固件更新的安全策略。通过LAN8720芯片与STM32F429的配合,可以构建可靠的网络连接,结合tftpd64等服务器工具进行测试,实现高效便捷的固件更新。在实际项目中,开发者应充分理解并掌握这些知识点,以确保系统的稳定性和可维护性。
2024-08-27 14:39:27 4.4MB stm32 网络 网络
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体(STMicroelectronics)生产,广泛应用在嵌入式系统设计中。本资源提供的是一套STM32针对三菱FX3U PLC的源代码,适合在MDK(Keil uVision)环境中编译使用。MDK是由ARM公司开发的嵌入式软件开发工具,支持多种ARM架构的微控制器。 源码兼容MDK的两个主要版本:MDK4和MDK5。MDK4是较早的版本,而MDK5则增加了许多新功能和优化,对于较新的STM32芯片支持更好。在从MDK4项目转换到MDK5时,用户需要注意项目配置的差异。在本例中,尽管源码最初是为MDK4设计的,但可以在MDK5中通过选择适当的选项成功编译,且仅产生一个警告,这个警告是由于一个多余的变量导致的。 三菱FX3U系列PLC是三菱自动化产品线中的一款高性能小型PLC,广泛应用于自动化设备和控制系统中。STM32仿FX3U的功能意味着这套源码实现了与FX3U PLC的兼容性,可能包括通讯协议、指令集仿真等,使得开发者能在STM32平台上实现类似FX3U的功能,从而降低硬件成本或者实现更复杂的应用。 源码的关键部分可能包含以下模块: 1. **通讯协议实现**:如串口(RS-232/485)通信,可能使用了MODBUS或三菱专有的PLC通信协议。 2. **指令解析**:复现FX3U的编程指令,如逻辑控制、定时器、计数器等。 3. **寄存器模拟**:模拟FX3U的输入/输出寄存器,处理外部输入和驱动外部输出。 4. **中断服务程序**:用于响应外部事件,如按钮按下、传感器信号等。 5. **错误处理**:确保在出现异常情况时,系统能正确恢复或提供反馈。 使用这套源码进行开发时,开发者应熟悉STM32的HAL库或LL库,以及MDK的项目配置。同时,了解FX3U PLC的编程语言(如Ladder Diagram或Structured Text)也是必要的。通过调试和修改源码,可以定制化自己的应用,例如添加新的功能模块,优化性能,或是适配不同类型的传感器和执行器。 在实际应用中,这套源码可能适用于以下场景: - **教育和培训**:学习和理解PLC与微控制器之间的交互,对比不同平台的实现方式。 - **原型验证**:在开发基于STM32的自动化系统时,快速验证设计思路。 - **降低成本**:使用STM32替代昂贵的FX3U PLC,降低系统成本。 - **扩展功能**:在原有FX3U系统基础上增加新的功能,如网络连接、高级控制算法等。 这份资源对于需要在STM32上实现三菱FX3U PLC功能的开发者来说极具价值。通过深入理解和调整源代码,可以充分利用STM32的性能优势,实现更高效、更灵活的自动化解决方案。
2024-08-25 18:07:44 13.33MB fx3u
1
STM32解码ev1527类的433遥控器,资源占用1个定时器和1个IO口,IO口设置为上下边沿触发,特征提取遥控器发送的数据帧中的低电平时长,并以此判断和解析数据。程序代码非常简洁。 https://blog.csdn.net/qq_39649731/article/details/137949401?spm=1001.2014.3001.5501资源的内容描述。
2024-08-24 14:49:03 12.41MB stm32
1
**Modbus Slave:Modbus从设备仿真器** Modbus是一种广泛应用的通信协议,它允许不同设备之间进行数据交换,尤其在工业自动化系统中极其常见。Modbus Slave是一款用于模拟Modbus从设备(Slave)的软件工具,使得用户可以在没有实际硬件设备的情况下测试和调试Modbus主设备(Master)或者验证系统通信功能。 该软件包含以下关键知识点: 1. **Modbus协议详解**:Modbus是一种串行通信协议,最初由Modicon公司(现Schneider Electric)开发,现在已成为开放标准。它定义了设备如何通过串行线进行数据传输,包括ASCII、RTU(远程终端单元)和TCP/IP三种模式。在Modbus网络中,设备被分为主设备和从设备,主设备发起请求,从设备响应。 2. **Modbus从设备仿真**:Modbus Slave软件允许用户创建虚拟的Modbus从设备,这些设备可以响应来自主设备的数据读取和写入请求。这对于测试主设备的通信逻辑,确保其能正确与各种从设备交互非常有用。 3. **功能特性**: - 支持多种Modbus功能码,如0x01(读离散输入),0x03(读保持寄存器),0x06(写单个保持寄存器)等。 - 可配置的寄存器值,用户可以根据需求设置模拟从设备的寄存器状态。 - 支持多个从设备地址,模拟多设备网络环境。 - 提供日志记录功能,便于分析通信过程和故障排查。 4. **软件组件**: - `mbslave.chm`:帮助文档,包含软件的详细使用指南和API参考。 - `mbslave.exe`:主程序执行文件,运行Modbus Slave软件。 - `uninstall.exe`:卸载程序,用于移除软件。 - `mbslave-user-manual.html`:用户手册,提供详细的使用教程和操作步骤。 - `mbslave.tlb`:类型库文件,包含软件接口的元数据,供编程时使用。 - `license.txt`:软件许可协议,详细列出了使用软件的条件和限制。 - `ReadMe.txt`:包含软件安装和运行的注意事项或更新信息。 - `example.xlsm`:可能包含示例配置文件或工作簿,展示如何设置和使用软件。 - `images`:图像文件夹,存储与软件相关的图标和其他图形资源。 5. **应用场景**:Modbus Slave广泛应用于工业控制系统开发、自动化设备调试、PLC(可编程逻辑控制器)程序验证等场合。通过该软件,工程师可以快速模拟不同的从设备响应,优化主设备的控制逻辑,提高系统的稳定性和可靠性。 6. **使用方法**:启动`mbslave.exe`,根据`mbslave-user-manual.html`中的指导配置虚拟从设备的参数,如地址、数据类型、寄存器值等。然后,连接到主设备进行通信测试。日志记录可以帮助用户检查通信过程中是否有错误发生。 Modbus Slave是Modbus通信系统开发和调试过程中不可或缺的工具,它简化了从设备的模拟,促进了系统集成的效率。了解并熟练使用这款软件,对于从事工业自动化或相关领域的工程师来说,具有很高的价值。
2024-08-23 15:31:22 1.12MB modbus
1
STM32F103是意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。FreeRTOS则是一个轻量级的实时操作系统(RTOS),适用于资源有限的微控制器,如STM32F103。在Windows环境下,开发基于STM32F103的FreeRTOS应用通常需要借助GCC编译器的变种——armgcc,这是一个专门用于ARM架构的交叉编译工具链。 我们需要理解GCC编译器的基本概念。GCC(GNU Compiler Collection)是一套由GNU项目开发的开源编译器,支持多种编程语言,包括C、C++等。在嵌入式开发中,由于目标平台和开发环境的不同,我们通常使用交叉编译,即在宿主机(例如Windows)上运行编译器,生成适用于目标板(如STM32F103)的代码。 armgcc是GCC针对ARM架构的定制版本,它包含了预处理器、编译器、汇编器和链接器等多个组件。在编译过程中,预处理阶段会处理宏定义、条件编译等;编译阶段将源代码转化为汇编代码;汇编阶段将汇编代码转化为机器码;链接阶段则将多个目标文件合并成一个可执行文件,同时处理符号引用和重定位。 FreeRTOS的集成意味着我们要将RTOS的核心服务、任务调度、中断处理等功能与应用程序代码结合。FreeRTOS提供了一系列API,允许开发者创建任务、设置优先级、管理信号量和队列等。在STM32F103上,FreeRTOS的移植工作通常包括配置中断向量表、设置堆内存、初始化RTOS内核以及编写任务函数。 编译流程大致如下: 1. 安装armgcc工具链,确保其路径已添加到系统的PATH环境变量中。 2. 获取STM32F103的HAL库或LL库,这是ST官方提供的硬件抽象层,简化了与微控制器外设的交互。 3. 下载并解压FreeRTOS源码,将其整合到项目中,根据需要定制配置。 4. 编写main.c作为程序入口,这里一般会调用`vTaskStartScheduler()`启动RTOS调度器。 5. 创建其他任务函数,定义每个任务的行为。 6. 编写Makefile或使用IDE如Keil、IAR等,配置编译选项、链接器脚本等。 7. 使用编译命令(如`arm-none-eabi-gcc`)进行编译和链接,生成`.elf`文件。 8. 使用工具(如`arm-none-eabi-objcopy`)将`.elf`转换为`.hex`或`.bin`,便于烧录到STM32F103的闪存中。 在压缩包中,提供的文件可能包含以下内容: - FreeRTOS源码目录,包括任务管理、同步机制等核心组件。 - STM32F103的HAL库或LL库。 - 示例应用程序代码,可能包括主函数和示例任务。 - Makefile,用于自动化编译过程。 - 编译命令,展示如何手动调用armgcc进行编译和链接。 通过学习和实践这个项目,你可以深入理解STM32F103的开发环境配置、FreeRTOS的使用方法以及GCC交叉编译的技巧,这些都是嵌入式开发中不可或缺的基础知识。在实际应用中,你还可以扩展到更多功能,如网络通信、传感器驱动等,进一步提升你的开发能力。
2024-08-23 15:20:26 437KB stm32 gcc freeRTOS
1
今日学习配置HC-05蓝牙模块 与 STM32 F103C8T6 单片机的通信: 文章提供测试代码讲解、完整工程下载、测试效果图 主要需要用到的知识: 串口通信 目标是配置单片机串口1 与 HC-05蓝牙模块的通信,并借此传送数据打印数据给手机APP
2024-08-23 15:18:32 5.99MB stm32 网络 网络
1