深度学习理论是当下研究的热点之一。最近来自UIUC计算机助理教授Sun Ruoyu撰写一篇深度学习最优化理论和算法的综述论文,共60页257篇文献,概述了神经网络的优化算法和训练理论《Optimization for deep learning: theory and algorithms》,并得到众多大佬的推荐,比如模仿学习带头人加州理工Yisong Yue,欢迎大家阅览,需要一番数学理论功底,方能扛过。
2021-06-08 18:13:23 789KB DL_optimization
1
深度学习已经实现了广泛的应用,并在近年来变得越来越流行。多模态深度学习的目标是创建可以使用各种模态处理和链接信息的模型。单模态学习虽然得到了广泛的发展,但还不能涵盖人类学习的所有方面。
2021-06-08 18:08:38 1.84MB 多模态DL
1
元学习旨在学会学习,是当下研究热点之一。最近来自爱丁堡大学的学者发布了关于元学习最新综述论文《Meta-Learning in Neural Networks: A Survey》,值得关注,详述了元学习体系,包括定义、方法、应用、挑战,成为不可缺少的文献。
2021-06-06 14:23:20 713KB 元学习
1
随着数据驱动的机器学习研究的发展,各种各样的预测问题得到了解决。探索如何利用机器学习,特别是深度学习方法来分析医疗数据已经变得至关重要。现有方法的一个主要局限性是专注于网格数据; 然而,生理记录的结构通常是不规则的和无序的,这使得很难把它们作为一个矩阵来概念化。
2021-06-04 09:09:32 7.52MB 医疗诊断 GraphDL
1
弱监督目标检测(WSOD)和定位(WSOL),即使用图像级标签检测图像中包含边界框的多个或单个实例,是CV领域中长期存在且具有挑战性的任务。
2021-06-01 09:08:06 1.06MB 弱目标检测
1
为机器配备对世界实体及其关系的全面了解一直是人工智能的一个长期目标。在过去的十年中,大规模知识库(也称为知识图谱)已经从Web内容和文本源中自动构建出来,并且已经成为搜索引擎的关键模块。
2021-05-30 19:27:08 7.75MB KG 知识图谱构建
1
尽管在深度学习方面取得了最近的进展,但大多数方法仍然采用类似“筒仓”的解决方案,专注于孤立地学习每个任务:为每个单独的任务训练一个单独的神经网络。然而,许多现实问题需要多模态方法,因此需要多任务模型。多任务学习(MTL)旨在利用跨任务的有用信息来提高模型的泛化能力。
2021-05-30 16:06:19 4.33MB 《深度多任务学习》
1
知识库问答旨在通过知识库回答自然语言问题。近来,大量的研究集中在语义或句法上复杂的问题上。在本文中,我们精心总结了复杂知识库问答任务的典型挑战和解决方案,介绍了复杂知识库问答的两种主流方法,即基于语义解析(基于SP)的方法和基于信息检索(基于IR)的方法。
2021-05-28 09:07:47 401KB 复杂知识库 方法 挑战 对策
1
图机器学习(GML)因其建模生物分子结构、它们之间的功能关系以及整合多组数据集的能力而受到制药和生物技术行业越来越多的关注。在此,我们提出了一个关于药物发现和研发多学科的学术-工业综述的主题。
2021-05-25 09:10:37 912KB 图ML 药物发现
1
人和高级动物在整个生命中不断获取、微调和转让知识和技能。这种能力,称为lifelong learning,是由一系列神经认知机制协调的过程,这些机制共同促进了sensorimotor技能的发展以及对长期记忆的巩固和检索。因此对于计算系统和自动化智体,lifelong learning能力,对能否在现实世界进行交互并处理连续信息,至关重要。
2021-05-21 13:06:16 1.48MB 终身学习
1