MindSpore 框架下基于ResNet50迁移学习的方法实现花卉数据集图像分类(5类)
2024-07-28 17:00:53 613.56MB 迁移学习 数据集 python
1
图神经网络GNN数据集,计算机视觉领域数据集,共有221张图,八分类,平均节点数为40,平均边数为97
1
图神经网络(Graph Neural Networks, GNN)是深度学习领域中的一个重要分支,它专注于处理非欧几里得数据,如图结构数据。在本数据集“PTC-FM”中,我们聚焦于小分子的图表示和二分类任务。这个数据集包含349个图,每个图代表一个化学分子,其结构信息被抽象成节点和边的形式。平均每个图有14个节点,这通常对应于分子中的原子,而平均14条边则代表原子间的化学键。 图神经网络的工作原理是通过不断迭代地传播和聚合邻居节点的信息,从而对每个节点进行特征学习。在每一轮迭代(也称为消息传递层)中,每个节点的特征向量会与相邻节点的特征向量进行交互,然后更新自身的状态。这个过程可以理解为在图中传播信息,直到达到一个稳定状态或达到预设的迭代次数。通过对图中所有节点特征的汇总,可以得到整个图的全局表示,用于执行分类或其他下游任务。 对于小分子分析,GNN特别适合,因为它能捕获分子的拓扑结构和化学键信息。在PTC-FM数据集中,GNN模型可以学习识别分子结构与特定属性(例如,是否有毒性)之间的关系。二分类任务意味着模型需要区分两类不同的分子,比如有毒和无毒。 为了构建这样的模型,首先需要将分子结构数据转化为图的形式,其中节点代表原子,边代表化学键。然后,每个节点可以有初始特征,如原子类型,而边可能也有附加信息,如键的类型。在训练过程中,GNN模型会学习这些特征并利用它们进行分类。 在实际应用中,GNN模型的构建通常涉及以下步骤: 1. **数据预处理**:将分子结构数据转换为图表示,包括节点和边的初始化。 2. **定义GNN层**:设计消息传递函数和节点/图聚合函数。 3. **模型架构**:搭建多层GNN网络,并可能结合其他深度学习组件如全连接层。 4. **训练与优化**:通过反向传播算法更新模型参数,以最小化损失函数。 5. **评估与验证**:使用交叉验证或者独立测试集评估模型性能。 在这个数据集上,你可以尝试多种GNN变体,如Graph Convolutional Network (GCN)、Graph Attention Network (GAT) 或 Message Passing Neural Network (MPNN),并比较它们的性能。此外,可以考虑集成其他技术,如节点嵌入、图池化或图自编码器,以增强模型的表达能力和泛化能力。 PTC-FM数据集为研究和开发图神经网络提供了宝贵的资源,有助于推进化学信息学、药物发现和机器学习在物质科学领域的应用。通过深入理解和应用GNN,我们可以更好地理解和预测分子的性质,这对于新药研发、材料科学等领域具有重大意义。
1
BevFormer+数据集 cocodataset数据集 Marmousi1 mmdetection数据集COCO VIT算法数据集+cifar-10 VOCdevkit+Unet数据集 YOLO5+NEU-DET数据集 small数据集 datasets+DeepLabV3Plus数据集+datasets+EfficientDet数据集,zip ILSVRC2012 img_ val.tar SFC-using-CNN-Parihaka-3D-main.zip unet++数据集医学细胞数据集,zip VOC07+12+test.zip 有地震数据集含有断层数据二维segy文件和三维segy文件
2024-07-28 16:40:23 170B 深度学习 数据集
1
【毕业设计:基于图神经网络的异构图表示学习和推荐算法研究】 本毕业设计主要探讨了图神经网络(GNN)在异构图表示学习和推荐系统中的应用。图神经网络是一种强大的机器学习模型,它能处理非欧几里得数据结构,尤其适用于社交网络、知识图谱和复杂网络等领域的分析。在异构图中,不同类型的节点和边共同构成了复杂的网络结构,这为理解和挖掘数据间的关系提供了新的视角。 一、图神经网络基础 1. 图神经网络的定义:GNN 是一种对图数据进行深度学习的方法,通过消息传递机制在节点之间传播信息,从而学习节点的嵌入表示。 2. 模型结构:GNN 包含多层神经网络,每层通过聚合邻居节点的信息更新当前节点的状态,直到收敛或达到预设层数。 3. 消息传递:GNN 的核心是消息传递函数,它负责将一个节点的特征向量传递给其相邻节点,同时接收来自邻居节点的信息。 二、异构图表示学习 1. 异构图的特性:异构图包含多种类型节点和边,每种类型都有不同的属性和交互模式。 2. 表示学习挑战:如何在异构环境中有效地捕获不同类型节点和边的特征并进行统一表示,是异构图学习的关键。 3. GNN 在异构图中的应用:通过设计适应异构图的GNN模型,如Heterogeneous Graph Neural Network (HetGNN)、Metapath2Vec等,可以处理节点和边的多样性,捕捉丰富的语义信息。 三、推荐算法 1. 推荐系统概述:推荐系统旨在预测用户可能感兴趣的内容,通过分析用户历史行为、兴趣偏好等数据来实现个性化推荐。 2. 基于图的推荐:将用户、物品等视为图中的节点,通过GNN学习节点间的关系,进而预测用户可能的评分或点击概率。 3. 异构图在推荐中的优势:能够捕获用户-物品、用户-用户、物品-物品等多类型关系,提升推荐的准确性和多样性。 四、项目实现 本设计提供了一个完整的实现框架,包括数据预处理、模型训练、评估和推荐结果生成等环节。源码经过严格测试,确保可直接运行,为其他研究者或学生提供了参考和实践平台。其中,"demo"可能是演示代码或样例数据,帮助理解模型的运行流程和效果。 五、互动支持 作者承诺对下载使用过程中遇到的问题及时解答,保证良好的使用体验。这种互动交流有助于深化对项目的理解,提高问题解决能力。 本毕业设计深入研究了GNN在异构图表示学习和推荐算法中的应用,不仅涵盖了理论知识,还提供了实际操作的代码,对于学习和研究图神经网络在推荐系统中的应用具有重要价值。
2024-07-28 09:14:58 579KB 毕业设计
1
有个5个文件,适合初学者都输选择题 【New】DAY1_创建分析主题.docx 【New】DAY2_组件交互.docx 【New】DAY3_可视化专题.docx 【New】DAY4_数据编辑专题.docx 【New】DAY5_函数专题.docx
2024-07-28 00:46:33 21.47MB 帆软BI finebi
1
基于遗传算法(GA)优化长短期记忆网络(GA-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-27 16:14:12 28KB 网络 网络 matlab lstm
1
给深度学习入门者的python教程,包括常用的numpy和matplotlib的入门知识,简单易懂。
2024-07-24 10:00:00 1.63MB python 深度学习
1
OpenFOAM方腔驱动流算例 里面包括详细注释的icoFoam求解器icoFoam_learn 运行脚本为allrun,清理算例文件脚本为allclean 使用方法: 1、linux环境下安装OpenFOAM-7,并配置好环境变量 2、下载算例《icoFoam学习算例+程序》并解压 3、进入文件夹cavity_learn/icoFoam_learn在终端输入$wmake编译求解器icoFoam_learn 4、返回文件夹cavity_learn在终端运行脚本allrun,$./allrun 学习时在cavity_learn目录中打开vscode,建议将整个OpenFOAM拖入这个文件夹中,便于函数跳转
2024-07-23 16:12:35 155KB linux bash OpenFOAM
1
icoFoam 求解器名称 |-createFields.H 场变量的声明和初始化 ————————————————————————————————————————————— Info<< "Reading transportProperties\n" << endl; //屏幕提示读入参数控制文件,等价于 C++中std::cout //声明属性字典类对象,该对象由 constant 文件夹下的“transportProperties”初始化创建。 IOdictionary transportProperties ( IOobject //其实IOobject,顾名思义就是输入输出对象,它完成的是一个桥梁的作用,即连接要构造的类及硬盘中的相应文件。这可以通过其成员函数objectStream()了解到,当完成了“搭桥”之后,便可通过这一成员函数返回硬盘文件对应的输入流,从而从输入流中读入将要构造的类的相关信息// ( "transportProperties", // 文件名称 runTime.constant(), // 文件位置,case/constant mesh, // 网格对象 IOobject::MUST_READ_IF_MODIFIED, //如果更改,必须读入 IOobject::NO_WRITE // 不对该文件进行写操作 ) ); //字典查询黏性,以便初始化带有单位的标量 dimensionedScalar nu ( transportProperties.lookup("nu") ); //屏幕提示创建压力场 Info<< "Reading field p\n" << endl; //创建压力场 volScalarField p //声明一个带单位的标量场,网格中心存储变量。 ( IOobject // IOobject主要从事输入输出控制 ( "p", // 压力场初始文件名称 runTime.timeName(), // 文件位置,由case中的system/controlDict中的startTime控制 // 在OpenFOAM中,icoFoam是一个用于模拟无粘或低粘流动的求解器,常用于处理不可压缩流体的问题。在这个学习笔记中,我们将深入理解icoFoam的【createFields.H】文件中涉及的关键概念和技术。 `IOdictionary`是OpenFOAM中的一个重要类,它用于处理配置文件,例如`transportProperties`。`IOdictionary`通过`IOobject`类与硬盘上的文件建立联系,允许读取和写入特定的数据。在示例中,`transportProperties`字典读取了`constant`文件夹下的`transportProperties`文件,该文件定义了流体的物理性质,如黏度(nu)。`lookup("nu")`方法则用于获取黏度值,这是一个具有物理单位的标量。 接着,我们看到了`volScalarField p`的声明,它是压力场。`volScalarField`是OpenFOAM中用于表示在整个计算域内存储的标量场的类。`p`的压力场由`IOobject`控制,文件名为`p`,存储位置基于当前时间(由`runTime.timeName()`决定),这在处理非稳态问题时非常关键,因为它会随着模拟时间的变化而变化。`MUST_READ`表示必须读取此文件,而`AUTO_WRITE`意味着OpenFOAM会根据`controlDict`中的设置自动写入数据。 然后,`volVectorField U`声明了速度场,它是一个体向量场,同样使用`IOobject`进行管理和输入输出。`U`的定义方式与`p`类似,但代表的是流动的速度分量,也是在每个网格中心存储的。 `createPhi.H`包含的`surfaceField phi`涉及到界面流率,它被存储在体之间(volume)的交界面上。这种类型的场对于处理自由表面流动或者多相流问题至关重要,因为它能够追踪不同相之间的界面。 icoFoam求解器在启动时会读取必要的参数,如黏性(nu)和压力、速度场的初始条件。这些场都是基于网格的对象,它们的输入输出由`IOobject`管理,并且会随着模拟时间的推进动态更新。了解这些基本概念对于理解和使用icoFoam进行流体模拟至关重要。在实际应用中,用户还需要熟悉如何编写和修改相应的控制文件,如`controlDict`,以定制模拟的具体设置。
2024-07-23 16:09:39 57KB openfoam
1