毕业设计:基于图神经网络的异构图表示学习和推荐算法研究.zip

上传者: 44317448 | 上传时间: 2024-07-28 09:14:58 | 文件大小: 579KB | 文件类型: ZIP
【毕业设计:基于图神经网络的异构图表示学习和推荐算法研究】 本毕业设计主要探讨了图神经网络(GNN)在异构图表示学习和推荐系统中的应用。图神经网络是一种强大的机器学习模型,它能处理非欧几里得数据结构,尤其适用于社交网络、知识图谱和复杂网络等领域的分析。在异构图中,不同类型的节点和边共同构成了复杂的网络结构,这为理解和挖掘数据间的关系提供了新的视角。 一、图神经网络基础 1. 图神经网络的定义:GNN 是一种对图数据进行深度学习的方法,通过消息传递机制在节点之间传播信息,从而学习节点的嵌入表示。 2. 模型结构:GNN 包含多层神经网络,每层通过聚合邻居节点的信息更新当前节点的状态,直到收敛或达到预设层数。 3. 消息传递:GNN 的核心是消息传递函数,它负责将一个节点的特征向量传递给其相邻节点,同时接收来自邻居节点的信息。 二、异构图表示学习 1. 异构图的特性:异构图包含多种类型节点和边,每种类型都有不同的属性和交互模式。 2. 表示学习挑战:如何在异构环境中有效地捕获不同类型节点和边的特征并进行统一表示,是异构图学习的关键。 3. GNN 在异构图中的应用:通过设计适应异构图的GNN模型,如Heterogeneous Graph Neural Network (HetGNN)、Metapath2Vec等,可以处理节点和边的多样性,捕捉丰富的语义信息。 三、推荐算法 1. 推荐系统概述:推荐系统旨在预测用户可能感兴趣的内容,通过分析用户历史行为、兴趣偏好等数据来实现个性化推荐。 2. 基于图的推荐:将用户、物品等视为图中的节点,通过GNN学习节点间的关系,进而预测用户可能的评分或点击概率。 3. 异构图在推荐中的优势:能够捕获用户-物品、用户-用户、物品-物品等多类型关系,提升推荐的准确性和多样性。 四、项目实现 本设计提供了一个完整的实现框架,包括数据预处理、模型训练、评估和推荐结果生成等环节。源码经过严格测试,确保可直接运行,为其他研究者或学生提供了参考和实践平台。其中,"demo"可能是演示代码或样例数据,帮助理解模型的运行流程和效果。 五、互动支持 作者承诺对下载使用过程中遇到的问题及时解答,保证良好的使用体验。这种互动交流有助于深化对项目的理解,提高问题解决能力。 本毕业设计深入研究了GNN在异构图表示学习和推荐算法中的应用,不仅涵盖了理论知识,还提供了实际操作的代码,对于学习和研究图神经网络在推荐系统中的应用具有重要价值。

文件下载

资源详情

[{"title":"( 135 个子文件 579KB ) 毕业设计:基于图神经网络的异构图表示学习和推荐算法研究.zip","children":[{"title":"node_classification.csv <span style='color:#111;'> 669B </span>","children":null,"spread":false},{"title":"param_analysis.csv <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"rank.csv <span style='color:#111;'> 353B </span>","children":null,"spread":false},{"title":"param_analysis.csv <span style='color:#111;'> 212B </span>","children":null,"spread":false},{"title":"ablation_study.csv <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 152B </span>","children":null,"spread":false},{"title":"base.html <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"register.html <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"login.html <span style='color:#111;'> 937B </span>","children":null,"spread":false},{"title":"_paper_list.html <span style='color:#111;'> 883B </span>","children":null,"spread":false},{"title":"paper_detail.html <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"search_author.html <span style='color:#111;'> 598B </span>","children":null,"spread":false},{"title":"_author_list.html <span style='color:#111;'> 522B </span>","children":null,"spread":false},{"title":"author_rank.html <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"search_paper.html <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'> 488B </span>","children":null,"spread":false},{"title":"author_detail.html <span style='color:#111;'> 427B </span>","children":null,"spread":false},{"title":"plan.md <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 8.85KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"READ1ME.md <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"学者详情.png <span style='color:#111;'> 81.67KB </span>","children":null,"spread":false},{"title":"搜索论文.png <span style='color:#111;'> 77.12KB </span>","children":null,"spread":false},{"title":"论文详情.png <span style='color:#111;'> 56.37KB </span>","children":null,"spread":false},{"title":"RHCO.png <span style='color:#111;'> 41.51KB </span>","children":null,"spread":false},{"title":"学者排名.png <span style='color:#111;'> 39.43KB </span>","children":null,"spread":false},{"title":"rank_Recall.png <span style='color:#111;'> 33.60KB </span>","children":null,"spread":false},{"title":"rank_nDCG.png <span style='color:#111;'> 30.87KB </span>","children":null,"spread":false},{"title":"param_analysis_dimension.png <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"param_analysis_alpha.png <span style='color:#111;'> 26.63KB </span>","children":null,"spread":false},{"title":"param_analysis_Tpos.png <span style='color:#111;'> 25.73KB </span>","children":null,"spread":false},{"title":"GARec.png <span style='color:#111;'> 25.56KB </span>","children":null,"spread":false},{"title":"param_analysis_alpha.png <span style='color:#111;'> 25.05KB </span>","children":null,"spread":false},{"title":"ablation_study_oag-venue.png <span style='color:#111;'> 15.10KB </span>","children":null,"spread":false},{"title":"ablation_study_ogbn-mag.png <span style='color:#111;'> 14.86KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 16.68KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 12.92KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"tests.py <span style='color:#111;'> 8.03KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 7.35KB </span>","children":null,"spread":false},{"title":"build_author_rank.py <span style='color:#111;'> 6.54KB </span>","children":null,"spread":false},{"title":"heco.py <span style='color:#111;'> 6.28KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"oagcs.py <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"build_pos_graph.py <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"fine_tune.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"views.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"extract_cs.py <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false},{"title":"build_pos_graph_full.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"train_full.py <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"loadoagcs.py <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"smooth.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"0001_initial.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"train_full.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"train_full.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"rank.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"train_full.py <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"ai2000_crawler.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"random_walk.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"venue.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"recall.py <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"plot.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"train_sum.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"plot.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"sampler.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"random_walk.py <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"analyze.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"contrast.py <span style='color:#111;'> 990B </span>","children":null,"spread":false},{"title":"urls.py <span style='color:#111;'> 973B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 909B </span>","children":null,"spread":false},{"title":"train_word2vec.py <span style='color:#111;'> 902B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 873B </span>","children":null,"spread":false},{"title":"urls.py <span style='color:#111;'> 727B </span>","children":null,"spread":false},{"title":"manage.py <span style='color:#111;'> 670B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 610B </span>","children":null,"spread":false},{"title":"admin.py <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"apps.py <span style='color:#111;'> 421B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明