本文实例为大家分享了python3实现基于用户协同过滤的具体代码,供大家参考,具体内容如下 废话不多说,直接看代码。 #!/usr/bin/python3 # -*- coding: utf-8 -*- #20170916号协同过滤电影推荐基稿 #字典等格式数据处理及直接写入文件 ##from numpy import * import time from math import sqrt ##from texttable import Texttable class CF: def __init__(self, movies, ratings, k=5, n=20): self
2022-02-13 10:47:07 81KB movies python python3
1
博客推荐系统是向用户推荐可能感兴趣的博客的系统。分为游客状态和登录状态(功能:展示最新的博客、推荐热度最高的博客、按分类推荐博客、登录注册、点赞收藏、修改个人资料、发表管理博客、管理收藏的博客以及针对用户喜好推荐博客。)。压缩包中有博客数据采集的爬虫代码、建立数据表所需的数据、建表语句、Javaweb项目文件、MapReduce项目文件(推荐算法,基于物品的协同过滤算法)和打包好的jar包、自动化执行推荐算法的shell脚本。可作为javaweb或Hadoop结课作业的参考。
电影推荐系统 毕业设计的内容,基于协同过滤算法的电影推荐系统,目前还在学习完善中
2022-01-03 22:19:37 3.99MB HTML
1
为了解决传统的基于用户的协同过滤算法中的数据稀疏性问题,提高推荐的准确率,对推荐算法进行了改进并将改进后的算法应用在美食推荐领域。利用均值中心化方法对实验数据进行处理,减少因个人评分习惯差异造成的推荐误差。通过使用改进的空值填补法降低评分矩阵的稀疏性,在计算相似度时引入了遗忘函数和用户间的信任度,进一步提高了推荐系统的准确性。实验表明,提出的改进算法比传统算法有更高的准确率,并得出了在推荐过程中考虑用户和项目外的其他因素以及针对不同的数据信息采用不同的算法,都有利于提高推荐准确率的重要结论。
1
协同过滤算法设计(图书推荐系统数据集)
2021-12-30 17:09:46 2.48MB 推荐系统
1
基本的协同过滤推荐算法实现,包括数据集,以及算法的评价指标MAE的计算,数据集采用MovieLens中两个数据集进行测试
2021-12-30 16:26:21 559KB java
1
为解决协同过滤算法中的数据稀疏性问题,提出了一种改进的协同过滤算法。该算法使用slope-one算法计算出来的评分预测值来填充评分矩阵中的未评分项目,然后在填充后的用户—项目评分矩阵上通过基于用户的协同过滤方法给出推荐。利用slope-one算法计算出来的评分预测值作为回填值,既能降低评分矩阵的稀疏性,也保证了回填值的多样性,从而减少均值、中值等单一填充值造成的推荐误差。在MovieLens-1M数据集上对该改进算法和协同过滤算法及均值中心化处理的算法作五折交叉实验,结果表明,基于评分预测值填充数据后的协同过滤算法有效地缓解了数据稀疏性问题,并且有更好的推荐效果。
1
协同过滤系统是电子商务系统中最重要的技术之一,用户相似性度量方法是影响推荐算法准确率高低的关键因素
2021-12-26 14:39:46 620KB 协同过滤 云模型
1
机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介. [1]
2021-12-23 18:06:14 640KB 机器学习 
1
基于用户兴趣分类的协同过滤推荐算法
2021-12-22 18:36:32 663KB 协同过滤
1