基于改进神经网络ADRC的永磁同步电机闭环控制仿真模型与传统自抗扰PMSM的比较研究,传统ADRC与改进神经网络ADRC的永磁同步电机闭环控制仿真模型 传统自抗扰PMSM:采用二阶自抗扰的位置电流双闭环控制 改进RBF自抗扰ADRC:自抗扰中状态扩张观测器ESO与神经网络结合,对ADRC中的参数进行整定 有搭建仿真过程的参考文献及ADRC控制器建模文档 ,关键词:传统ADRC; 改进神经网络ADRC; 永磁同步电机; 闭环控制仿真模型; 二阶自抗扰; 位置电流双闭环控制; 状态扩张观测器ESO; 神经网络; 参数整定; 仿真过程; ADRC控制器建模文档。,基于神经网络优化的ADRC在永磁同步电机控制中的应用与仿真研究
2025-12-16 16:50:05 444KB ajax
1
提出一种基于有限元模型的开关磁阻电机自适应模糊神经网络系统(ANFIS)无位置传感器控制的新方法。自适应模糊神经网络系统以相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流、磁链和转子位置角度的非线性映射关系。网络训练的样本数据来自于有限元模型分析,它具有足够的精度,且不需要测量仪器和线路布置,不受环境干扰因素影响,能够大幅减少试验成本,缩短试验周期。仿真和实验结果表明,由自适应模糊神经网络获得的角度信号和由位置传感器获得的角度信号相比误差较小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。
2025-12-16 15:55:48 755KB 行业研究
1
无位置传感器无刷直流电机控制系统设计主要以AT89C51单片机为基础,将稀土永磁无位置传感器无刷直流电机的结构简化,体积缩小,可靠性提高。控制系统的设计集中于转子位置检测、零启动和PWM调速控制等方面,涵盖了硬件电路和软件设计。在控制系统中,反电动势过零检测法、反电动势积分法和续流二极管法是转子位置检测技术中较为成熟的方法。无刷直流电机(BLDCM)以其结构简单、无机械磨损、高可靠性、高调速精度、高效率和高启动转矩等特点,在微特电机调速领域得到广泛应用。控制策略上,可分为开环控制、单闭环控制和双闭环控制三种。本文根据无刷直流电机的工作原理,提出了“两相导通星形三相六状态”的控制策略,该策略在精度要求不高的场合能够满足控制方便和结构简单的需求。 控制系统的硬件电路包括功率开关管、整流二极管、电容器、电阻等基本电子元件,以及AT89C51单片机。在软件设计方面,作者采用了模块化的编程思想,能够实现软件的灵活管理和功能拓展。本文详细分析了控制系统各部分硬件电路,并给出了关键步骤的程序流程图。 无刷直流电机的工作原理在图1中有描述。控制系统工作在两相导通星形三相六状态控制策略下,其工作过程如下所述: 当t=0°时,功率开关管的动作启动电机运转。控制系统会根据电机的反电动势、电流及电压等参数实时调整开关管的状态,以达到对电机速度的精确控制。在星形连接的三相无位置传感器无刷直流电机中,电机的相绕组分别在六个不同的状态中交替导通,以实现连续旋转。控制器基于电机的转子位置信息,通过开环控制方式选择在适当的时间点导通相绕组,从而控制电机的运动。 无位置传感器无刷直流电机控制系统设计的优点在于系统结构简单,成本低,可靠性高,且在非精密控制场合可满足使用需求。由于本文基于AT89C51单片机进行设计,它的实现需要对单片机的编程和外围电路设计有一定了解。控制系统的开发和调试,需要对电机控制理论及电子电路知识有扎实的基础,并具备一定的软硬件调试能力。 在实际应用中,无刷直流电机控制系统的研发不仅要求工程师掌握电子电路和电机控制理论,还需要了解控制算法的实现方法,以及电机的容错功能如何在系统中实现。本文所提出的系统设计方法在不增加系统复杂度的前提下,有效地利用了单片机资源和简单电路,实现了一种低成本、高可靠性、易于实现的无刷直流电机控制系统,这在微特电机调速领域具有重要的应用价值和推广意义。
2025-12-16 15:25:38 358KB 首发论文
1
电动运输小车的PLC控制系统设计.docx
2025-12-16 14:23:23 162KB
1
开关磁阻电机(SRM)的位置传感器增加了电机结构的复杂性,且由于传感器分辨率的限制,导致系统高速运行性能下降。现有的检测方案大部分依赖于开关磁阻电机模型,起动和低速难以解决磁链积分误差问题。采用了一种新型的激励脉冲法控制方案,提出并分析了无位置传感器SRM控制策略,并在三相12/8极15 kW开关磁阻电机上进行实验验证。实验结果表明,该方案无需任何电机模型和参数,实现了开关磁阻电机的无位置传感器控制,具有良好的静动态性能。
1
在自动化和机电一体化领域中,综采工作面的设备优化一直是一个重要的研究方向。综采工作面刮板输送机链条自动张紧系统的开发是一个典型的实例。该系统的研发利用了现代控制理论和电子技术,提高设备的工作效率和安全性,降低工人的劳动强度。 提到的C8051F020单片机是一种性能强大的微控制器,它在本系统中扮演着核心的角色。该单片机时钟频率可达25MHz,指令执行速度高达25MIPS,能够快速处理复杂的控制算法。C8051F020丰富的外设配置功能使其能够通过多种传感器和控制接口灵活地与系统其他部分通信,满足了实时控制的需求。 系统采用的硬件设计包括一个功能强大的中央控制单元,其硬件框图清晰地展示了各个组件。例如,RS-485通讯电路用于实现远程控制和数据传输,它支持Modbus-RTU协议,能够在工业环境中可靠地工作。为了保证数据采集的准确性,系统采用了光耦隔离技术,有效防止外部干扰或过电压、过电流对电路的损害。 自动控制系统的关键在于其控制策略。文中提到的单参数控制和多参数自动控制模式是张力控制策略的一部分。单参数控制可能指的是依赖于某一特定的传感器信号(如链条张力或油缸位移)来进行调节。而多参数控制模式则可能涉及到同时考虑多个参数(例如链条张力、油缸压力和位移,以及电机的电压和电流等)来更精确地评估系统状态并作出控制决策。这种控制策略需要基于一些算法,如PID控制或模糊逻辑控制,来实现对链条张紧力的动态调节。 信号采集电路的精确度和稳定性直接决定了整个张紧系统的性能。电路需要对油缸压力和位移、电动机的状态和运行参数进行实时监测,并保证这些信号的采集不会因外界干扰而失真。这通常涉及到模拟信号和数字信号的转换和隔离技术。 RS-485总线因其较强的抗干扰能力和较高的传输速率,被广泛应用于工业控制系统中。文中描述了RS-485电路的设计,以及MAX3088芯片的应用,这是为了确保在复杂的工业环境中数据传输的可靠性和速度。 此外,系统还包含了人机交互界面设计,如4.3吋液晶显示屏,它可以让操作人员输入参数,同时显示传感器的数据。这样的设计提高了操作的便捷性,并有助于实时监控设备状态。 综采工作面刮板输送机链条自动张紧系统的设计不仅仅局限于硬件和控制策略本身,还涉及到整个系统的网络拓扑结构。该结构决定了系统中各个控制分站(如机尾控制器)和监测装置(如刮板输送机的机尾监测装置)之间的信息交换方式和通道。这种设计可以实现对整个综采工作面输送设备状态的监控,包括但不限于刮板输送机链条的工作状况。 本文涉及的技术细节和系统设计策略,展示了一套完整的综合自动化控制系统方案,该方案能够有效提高综采工作面的自动化程度和安全保障,对于推动采煤行业的技术进步具有重要意义。
1
本文建立了刮板机张力控制模型,并结合模糊控制和PID控制技术设计了模糊PID控制器,分析了模糊PID控制器对链条张力的控制原理,研究了参数非线性、时变性对刮板输送机链条张力控制系统的影响,制定了模糊控制规则以及模糊推理的方法。利用MATLAB软件对建立的模型进行的仿真,表明模糊PID控制有较好的执行性能,较好地满足刮板机链条的张力控制要求。
2025-12-16 11:18:04 168KB 行业研究
1
内容概要:本文介绍了一种带加减速逐点比较法的直线圆弧插补算法,该算法适用于STM32F407及任何可编程控制器,在XY、XZ、YZ方向上实现高精度插补。算法通过逐点比较位置和速度,计算下一点的位置,避免使用定时器控制输出脉冲引脚,解决了传统方法中因定时器寄存器大小导致的脉冲数量限制问题。文中还展示了部分源码,详细解释了算法的实现步骤,强调了算法的灵活性和易用性。 适合人群:对嵌入式系统开发有一定了解的研发人员,尤其是从事数控机床、3D打印、雕刻机等领域工作的工程师。 使用场景及目标:① 实现高精度的直线和圆弧插补;② 解决大圆加工时出现的不规则问题;③ 提供灵活的加减速控制,提升加工效率和精度。 其他说明:该算法适用于多种硬件平台,只需更换引脚配置即可适配不同的控制器。控制精度取决于驱动器的细分程度,例如32细分的驱动器精度可达0.00625mm。
2025-12-16 10:56:42 889KB
1
在本文中,我们将深入探讨如何使用MSP430微控制器通过并行和端口模拟SPI(Serial Peripheral Interface)协议来控制AD9854数字频率合成器。MSP430是由德州仪器(Texas Instruments)开发的一款低功耗、高性能的16位微控制器,广泛应用于各种嵌入式系统设计中。而AD9854是一款高精度、低功耗的直接数字频率合成器(DDS),常用于信号发生器和通信设备。 理解SPI协议至关重要。SPI是一种同步串行接口,通常用于连接微控制器和外部设备,如传感器、存储器等。SPI协议包含四个主要信号线:主时钟(SCLK)、主输出从输入(MISO)、主输入从输出(MOSI)和芯片选择(CS)。在模拟SPI时,MSP430需要复用其GPIO(General Purpose Input/Output)端口来实现这些功能。 1. **并行模拟SPI**: 由于MSP430的硬件SPI可能无法直接与AD9854兼容,因此我们需要通过并行方式模拟SPI协议。这涉及到在代码中精确控制数据传输的时序,通过独立设置MISO、MOSI和SCLK引脚的电平。例如,MSP430可能需要配置一个GPIO端口为MOSI,另一个为SCLK,并根据协议要求在适当时间切换它们的状态。 2. **端口模拟**: 在MSP430上,我们还可以利用GPIO端口的多个引脚来模拟SPI的数据线。例如,可以将一个端口的4个或更多引脚分别分配给SCLK、MISO、MOSI和CS,然后通过软件控制这些引脚的电平状态,实现SPI通信。 3. **控制AD9854**: AD9854有多个控制和数据输入引脚,如数据总线(D7-D0)、地址总线(A2-A0)、写使能(WE)、读使能(RE)和复位(RST)。通过模拟SPI,MSP430需要按照AD9854的数据手册中指定的时序和命令格式,向这些引脚发送适当的信号来配置和控制频率合成器。 4. **程序实现**: 在C语言或汇编语言中,编写控制程序需要精确的时序控制。例如,使用延时函数确保每个时钟周期的准确,以及在合适的时间切换数据线状态。同时,确保正确设置CS信号以选择AD9854,避免与其他SPI设备冲突。 5. **注意事项**: - 确保正确配置MSP430的GPIO端口模式,使其能够作为推挽输出或开漏输出。 - 注意时钟速度的选择,通常SPI速度不应超过从设备的最高时钟速率。 - 为了提高效率,可以考虑使用中断处理来同步MSP430的其他任务。 通过以上步骤,我们可以成功地使用MSP430微控制器通过并行和端口模拟SPI方式控制AD9854,实现频率合成器的精准控制。这种模拟方法虽然比硬件SPI接口复杂,但灵活性更高,能够适应各种不同的外设和接口需求。在实际应用中,开发者应仔细研究MSP430和AD9854的数据手册,以确保正确配置和操作。
2025-12-16 10:34:02 101KB
1
成熟项目 内容概要】 本文档系统整理了AGV调度系统的开发流程与实现细节,涵盖系统调研、地图编辑器、接口协议、数据库配置、任务调度、PLC通信等内容,并附带多个C#项目代码示例,包括S7PLCClient、科聪与仙工控制器对接、磁导航协议等。 【适用人群】 AGV系统开发者 自动化与物流系统集成工程师 C# 上位机开发人员 工业自动化项目技术负责人 【使用场景及目标】 可用于搭建AGV调度系统、任务管理系统 实现AGV与PLC、WMS系统的数据对接 开发地图编辑与路径规划功能 学习工业自动化中AGV调度与控制的实际编码实现 【其他说明】 文档中包含多个实际项目代码结构说明,适合作为二次开发或系统集成的参考资料。适用于Visual Studio 2022开发环境,支持SQL Server数据库,涵盖从界面到业务逻辑的全流程实现。
2025-12-16 09:40:17 1.25MB
1