《遗传算法与模拟退火融合在TSP与车间作业调度中的应用》 在解决复杂的优化问题时,传统的数学方法往往力有未逮,而计算智能领域的算法如遗传算法(Genetic Algorithm, GA)和模拟退火(Simulated Annealing, SA)则展现出了强大的潜力。本文将探讨如何将这两种算法融合,应用于旅行商问题(Traveling Salesman Problem, TSP)和车间作业调度问题(Job Shop Scheduling Problem, JSSP),并介绍相关代码实现。 一、遗传算法 遗传算法是受生物进化理论启发的一种全局优化算法。它通过模拟种群的自然选择、基因重组和突变等过程,逐步演化出更优的解决方案。在TSP中,每个个体代表一种旅行路径,通过交叉、变异操作更新种群,寻找最短的旅行路线。遗传算法的优势在于其全局搜索能力,能跳出局部最优解,但可能会陷入早熟。 二、模拟退火 模拟退火算法源自固体物理的退火过程,其核心思想是在接受较差解时引入一定的概率,从而避免过早收敛。在解决JSSP时,SA能有效处理约束条件下的优化问题,寻找最小化完成时间的作业调度方案。SA的优势在于其动态调整接受解的策略,有助于找到全局最优。 三、融合算法 遗传算法和模拟退火的融合可以结合两者的优点,提高解决问题的效率和精度。在融合过程中,可以先用遗传算法快速搜索大范围空间,再用模拟退火细化搜索,对遗传算法得到的近似解进行优化。这种混合策略在处理复杂优化问题时,通常能获得更好的结果。 四、TSP与JSSP应用 1. 旅行商问题:TSP是一个经典的组合优化问题,目标是找到访问多个城市的最短路径,且每个城市仅访问一次,最后返回起点。遗传算法和模拟退火的融合可以有效地寻找接近最优的解决方案。 2. 车间作业调度问题:JSSP涉及多个工序和机器,每个作业需按特定顺序在多台机器上完成,目标是最小化总的完成时间。融合算法的应用可以解决复杂的约束条件,找到最佳的作业顺序。 五、代码实现 “算法集合”中的代码实现了上述理论,包含了遗传算法和模拟退火的实现,以及它们的融合版本。通过运行这些代码,可以直观地理解算法的运作机制,并在实际问题中进行应用。 总结,遗传算法和模拟退火作为计算智能的重要工具,具有广泛的应用前景。通过它们的融合,我们可以解决更复杂的优化问题,如TSP和JSSP。理解并掌握这些算法的原理与实现,对于提升问题解决能力具有重要意义。
2024-09-10 17:06:21 790KB 遗传算法 模拟退火
1
【项目资源】:包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-09-10 16:59:48 45.19MB 图像处理
1
研究了任意点正弦波信号频率估计的快速算法,先对截短信号序列(2的整数次幂长度)用M-Rife算法进行频率初估计并得到结果f,以此作为中心频率,选取f+1/2Lfx,-1/2Lfx两个频率对信号作L点DFT,然后对这两条谱线作频率插值(即Rife算法)得到频率的精确估计。仿真结果表明本算法性能稳定,略优于M-Rife算法,接近克拉美-罗限(CRLB)。该算法便于在DSP,FPGA等器件上实现快速频率估计。
2024-09-10 13:29:09 336KB 工程技术 论文
1
某红书x-s算法纯js补环境版本。 使用python execjs调用js实现,内含完整接口调用Demo。 zip包内是某红书的补环境版本x-s参数的加密生成算法,独立JS文件,提供完整可用的调用测试示例,有问题可以联系作者。
2024-09-10 09:19:13 59KB javascript python
1
在IT领域,尤其是在数据分析和机器学习中,"基于BP-Adaboost算法的公司财务预警建模代码"是一个重要的研究方向。此项目涉及到的核心技术主要包括两部分:BP神经网络(Backpropagation Neural Network)和Adaboost算法。下面将详细阐述这两个算法以及它们在财务预警模型中的应用。 BP神经网络是一种广泛应用的前馈型多层神经网络,其工作原理是通过反向传播误差来调整网络权重。在网络训练过程中,BP算法会逐步优化权值,使得网络的预测结果与实际目标尽可能接近。在公司财务预警建模中,BP神经网络可以用于捕捉复杂的非线性关系,分析财务指标之间的相互作用,预测公司可能面临的财务风险。 Adaboost,全称为自适应增强算法(Adaptive Boosting),是一种集成学习方法,它通过组合多个弱分类器形成一个强分类器。Adaboost的工作机制是迭代地训练弱分类器,每次迭代时都会更重视上一轮被错误分类的数据,从而使得下一轮的弱分类器更专注于解决这些困难样本。在财务预警模型中,Adaboost可以有效地处理不平衡数据集问题,提高对异常财务状况的识别能力。 将BP神经网络与Adaboost结合,可以构建一种强化的学习模型,即BP-Adaboost算法。这种模型首先利用BP神经网络对原始数据进行初步处理,然后通过Adaboost算法对BP网络的预测结果进行修正和优化,以提高模型的整体预测精度和稳定性。在公司财务预警中,这样的组合模型能够更好地识别潜在的财务危机,为决策者提供及时、准确的风险预警信号。 在实际应用中,这个压缩包文件“基于BP_Adaboost算法的公司财务预警建模代码”很可能包含以下几部分内容: 1. 数据预处理脚本:用于清洗、转换和归一化财务数据,使其适合作为神经网络的输入。 2. BP神经网络模型实现:包括网络结构定义、参数设置、训练过程和预测功能。 3. Adaboost算法实现:涉及弱分类器的选择、训练过程、权重调整等步骤。 4. 模型融合和评估:将BP网络和Adaboost的结果结合,并使用特定的评价指标(如准确率、召回率、F1分数等)进行性能评估。 5. 示例或测试数据集:用于验证模型效果的一组财务数据。 通过运行和理解这些代码,开发者不仅可以深入理解BP-Adaboost算法,还可以将其应用于其他领域的预测建模,例如信用评级、市场趋势预测等。同时,这个模型的建立过程也为后续的研究提供了基础,可以进一步优化算法参数,提升预警模型的性能。
2024-09-09 10:38:00 59KB 预测模型
1
粒子群优化算法是一种群体智能优化算法,其设计灵感来源于自然界中鸟群或鱼群等生物群体的行为模式。在这种算法中,一个由个体组成的群体通过社会交往和信息共享的方式,共同搜索最优解。这种算法通常用于解决优化问题,其基本原理是模拟鸟群捕食的行为,每个粒子代表问题空间中的一个潜在解,通过跟踪个体的经验和群体的经验来动态调整搜索方向和步长。 基本粒子群优化算法包含两个主要的变体:全局粒子群优化算法(g-best PSO)和局部粒子群优化算法(l-best PSO)。全局算法利用群体中最优个体的位置来指导整个群体的搜索方向,具有较快的收敛速度,但在解决复杂问题时容易产生粒子群体在局部最优解附近过早收敛的问题。而局部算法是根据每个粒子的邻域拓扑结构来更新个体最优解,虽然可以细化搜索空间,但可能会减弱群体最优解的聚拢效应,导致收敛速度变慢。 为解决这两种变体的不足,陈相托、王惠文等人提出了GL-best PSO算法。这种新算法试图平衡全局搜索能力和局部搜索能力,通过调整全局和局部最优解的权重来达到优化效果。GL-best PSO算法在保持快速收敛的同时,能够避免粒子过早地陷入局部最优,从而提高解决复杂问题的能力。 GL-best PSO算法的核心是建立一个结合了全局最优解(g-best)和局部最优解(l-best)的粒子更新规则。全局最优解能够指导整个粒子群朝向当前已知的全局最优方向移动,而局部最优解则允许粒子探索其周围的小区域,以增加解空间的多样性。在GL-best PSO模型中,通过中和全局和局部的聚拢效应,力图找到一种既具有快速收敛速度又具有精细搜索能力的平衡点。 为了验证GL-best PSO算法的有效性,作者通过一系列仿真实验来评估该算法的性能,并与几种经典的粒子群优化算法进行比较。仿真实验所使用的测试函数集包含了各种复杂度和特点的优化问题,能够全面考察算法在不同情况下的优化表现。 总结而言,GL-best PSO算法是在粒子群优化算法领域的一次重要改进和创新,它不仅为控制科学与工程、最优化算法等研究提供了新的研究方向,也为解决实际优化问题提供了新的工具和思路。通过这种算法,研究者可以在保证收敛速度的同时,增加算法在搜索空间中的探索能力,提高求解质量,特别是在复杂问题的求解中体现出更优异的性能。
2024-09-07 00:33:39 530KB 首发论文
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-05 16:10:28 1.6MB matlab
1
1、具体要求:完成实验并提交实验报告。 2、实验内容:在Matble中使用分水岭算法对图像进行分割处理。 3、实验原理:分水岭变换的思想源于地形学,它将图像看作是地形上被水覆盖的自然地貌,图像中每一灰度值表示该店海拔高度,其每一局部极小值及其影响区域称为集水盆,而集水盆边界为分水岭。 在图像分割中,分水岭变换是指将原图变换成一个标记图像,其所有属于同一盆中的点被赋予同一标记,并用特殊标记来标识分水岭上的点。 分水岭算法是基于形态学分割的算法,利用形态学处理函数,不仅能达到有效分割图像的目的,而且能消除过分个现象。 分为若干类别的处理过程。传统的遥感影像分类方法忽略了影像的空间结构信息,精度不是很高。特别是上个世纪90年代以来,高分辨率遥感影像(如IKONOS,SPOT5,COSMOS,OrbView,QuickBird等)被广泛应用,景观的结构、纹理等就表现得更加清楚。遥感影像的纹理特征提取已经成为一种重要的提高遥感影像分类精度的手段。目前,遥感影像纹理分析方法主要有自相关函数分析法、行程长度分析法、灰度共生矩阵分析法、傅立叶频谱分析法、小波分析法及分形分析法等 《基于Matlab的遥感图像分水岭算法详解》 图像分割是数字图像处理中的核心环节,对于理解和解析遥感图像至关重要。本篇文章主要探讨如何使用Matlab中的分水岭算法对遥感图像进行有效的分割处理,以提高遥感影像分类的精度。 分水岭算法是一种基于形态学的图像分割方法,它的灵感来源于地形学。在这一理论框架下,图像被视为地形,其中的每个灰度值代表不同的海拔高度。图像中的局部最小值及其邻域被称为集水盆地,而这些盆地之间的边界即为分水岭。在实际应用中,分水岭变换将原始图像转化为标记图像,同一盆地内的像素点赋予相同的标记,分水岭点则用特殊的标记区分。这种算法不仅能有效地分割图像,还能避免过度分割的问题。 遥感图像分割在高分辨率遥感影像广泛应用的背景下显得尤为重要。传统的分类方法往往忽视了影像的空间结构信息,导致分类精度不高。随着IKONOS、SPOT5、COSMOS等高分辨率卫星影像的普及,对影像的纹理特征提取成为提高分类精度的关键。常见的纹理分析方法包括自相关函数分析、行程长度分析、灰度共生矩阵分析、傅立叶频谱分析、小波分析以及分形分析等。 在Matlab环境中,实施分水岭算法通常涉及以下步骤: 1. 图像预处理:将彩色图像转化为灰度图像,以减少计算复杂度。这可以通过`rgb2gray`函数实现。 2. 直接应用分水岭变换:通过`watershed`函数对灰度图像进行分水岭变换。然而,直接应用可能会导致过度分割,例如花坛、广场、水塘等地物被过分划分。 3. 改进的分水岭算法:为解决过度分割问题,需要增强图像对比度。这可以通过构造结构元素(如圆盘形状的结构元素`strel('disk',15)`),然后应用顶帽变换(`imtophat`)和底帽变换(`imbothat`)来实现。接着,使用`imsubtract`和`imadd`函数结合这两种变换的结果,以增强物体和背景的对比度。再通过`imcomplement`函数增强谷点,最后使用`imextendedmin`和`imimposemin`检测并标记谷点,从而进行更精确的分水岭变换。 通过以上步骤,可以实现对遥感图像的精细化分割,提高对地物识别的准确性和清晰度。在实验中,应确保使用合适的Matlab版本(如本例中的Matlab7.0),并在适宜的操作系统环境下(如Windows 7)进行。同时,实验报告的撰写也是重要的一环,它能展示实验过程、结果和理解。 分水岭算法是遥感图像处理中的有力工具,通过Matlab的实现,我们可以有效地提取和分析图像信息,为遥感影像的分类和分析提供强大的支持。理解并掌握这一算法,对于提升遥感数据的应用价值具有深远的意义。
2024-09-05 11:11:34 3.05MB matlab
1
对Buades等人提出的非局部均值图像去噪算法进行改进。传统的方法在滤波参数定义上存在缺陷,为了解决这个问题,通过建立噪声方差与滤波系数的关系,提出解决噪声估计的方法。另外,根据小波系数的分布特点,利用GGD模型参数(尺度和形状参数)对系数进行拟合,并用GGD模型参数提出一种有效的噪声方差估计算法。实验结果表明,该噪声方差估计算法不仅能有效地估计噪声方差大小,而且使原有的非局部均值算法具有自适应性。这种自适应的非局部均值算法可以达到近似最优,具有鲁棒性和快速性,且算法精度高。
2024-09-05 10:57:57 825KB
1
算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用
2024-09-05 00:04:21 133.18MB 算法笔记 可供各学校计算机上机复
1