Most 3D shape classification and retrieval algorithms were based on rigid 3D shapes, deploying these algorithms directly to nonrigid 3D shapes may lead to poor performance due to complexity and changeability of non-rigid 3D shapes. To address this challenge, we propose a fusion view convolutional neural networks (FVCNN) framework to extract the deep fusion features for non-rigid 3D shape classification and retrieval. We first propose a projection module to transform the nonrigid 3D shape into a
2022-09-08 23:41:05 3.62MB 研究论文
1
Neural Networks and Deep Learning神经网络与深度学习 中文版.pdf 个人收集电子书,仅用学习使用,不可用于商业用途,如有版权问题,请联系删除!
2022-09-06 15:15:54 3.06MB 深度学习 中文版
1
Neural Networks and Deep Learning - 神经网络与深度学习 中英两个版本文件- 完美排版
2022-09-06 15:08:34 15.98MB 神经网络 深度学习
1
Social Networks and the Semantic Web, Springer 2007。
2022-09-05 15:51:31 6.45MB SemanticWeb SocialNetworks
1
Siamese Neural Networks for One-shot Image Recognition,关于用于一次性图像识别的连体神经网络的论文,方便深入图像深度学习
2022-08-27 09:07:14 1.03MB 深度学习 神经网络 卷积神经网络
1
Non-Local Neural Networks with Grouped Bilinear Attentional Transforms, 论文Non-Local Neural Networks with Grouped Bilinear Attentional Transforms中提出的一种针对non-local网络改进的网络结构。 Non-local可以建模时间和空间维度上的关联性;GCNet结合了基于通道的注意力机制SE和能够捕获全局空间信息的Non-local网络;BAT是在传统的non-local模块上改进的可进行变形操作的新型模块,并且在图片分类和视频分类的性能上已经超过了传统的non-local网络结构。
2022-08-23 11:05:56 838KB 论文 BAT BilinearAttenti
1
Data-science-and-complex-networks-real-cases-studies-with-Python.pdf
2022-08-11 10:54:26 3.25MB 综合文档
1
小区协作算法与架构,包括Turbo基站,联合预编码等等
2022-08-10 10:13:41 8.94MB Cooperative Cellular Network
1
PyTorch中的广泛残留网络(WideResNets) 在PyTorch中实现的CIFAR10 / 100的WideResNets。 此实现所需的GPU内存少于官方Torch实现所需的GPU内存: : 。 例子: python train.py --dataset cifar100 --layers 40 --widen-factor 4 致谢 宽余网络(BMVC 2016) ,作者:Sergey Zagoruyko和Nikos Komodakis。
1
可切换归一化 可切换规范化是一种规范化技术,它能够以端到端的方式为深度神经网络中的不同规范化层学习不同的规范化操作。 更新 2019/3/21:发布分布式培训框架和面部识别框架。 我们还发布SyncBN和SyncSN的pytorch实现小批量任务,如分割和检测。 有关SyncBN和SyncSN的更多详细信息,可以参考。 2018/7/27:已发布ResNet50 + SN(8,1)和SN(8,4)的预训练模型。 当目标任务的批处理大小被限制为较小时,这些模型可能会在微调阶段有所帮助。 我们还发布了ResNet101v2 + SN的预训练模型,该模型在ImageNet上达到了78.81%/ 94.16%的top-1 / top-5精度。 更多预训练模型即将发布! 2018/7/26:用于对象检测的代码已在的存储库中。 2018/7/9:我们想解释SN背后的优点。 请参阅或 。 201
1