1、具体要求:完成实验并提交实验报告。
2、实验内容:在Matble中使用分水岭算法对图像进行分割处理。
3、实验原理:分水岭变换的思想源于地形学,它将图像看作是地形上被水覆盖的自然地貌,图像中每一灰度值表示该店海拔高度,其每一局部极小值及其影响区域称为集水盆,而集水盆边界为分水岭。
在图像分割中,分水岭变换是指将原图变换成一个标记图像,其所有属于同一盆中的点被赋予同一标记,并用特殊标记来标识分水岭上的点。
分水岭算法是基于形态学分割的算法,利用形态学处理函数,不仅能达到有效分割图像的目的,而且能消除过分个现象。
分为若干类别的处理过程。传统的遥感影像分类方法忽略了影像的空间结构信息,精度不是很高。特别是上个世纪90年代以来,高分辨率遥感影像(如IKONOS,SPOT5,COSMOS,OrbView,QuickBird等)被广泛应用,景观的结构、纹理等就表现得更加清楚。遥感影像的纹理特征提取已经成为一种重要的提高遥感影像分类精度的手段。目前,遥感影像纹理分析方法主要有自相关函数分析法、行程长度分析法、灰度共生矩阵分析法、傅立叶频谱分析法、小波分析法及分形分析法等
《基于Matlab的遥感图像分水岭算法详解》
图像分割是数字图像处理中的核心环节,对于理解和解析遥感图像至关重要。本篇文章主要探讨如何使用Matlab中的分水岭算法对遥感图像进行有效的分割处理,以提高遥感影像分类的精度。
分水岭算法是一种基于形态学的图像分割方法,它的灵感来源于地形学。在这一理论框架下,图像被视为地形,其中的每个灰度值代表不同的海拔高度。图像中的局部最小值及其邻域被称为集水盆地,而这些盆地之间的边界即为分水岭。在实际应用中,分水岭变换将原始图像转化为标记图像,同一盆地内的像素点赋予相同的标记,分水岭点则用特殊的标记区分。这种算法不仅能有效地分割图像,还能避免过度分割的问题。
遥感图像分割在高分辨率遥感影像广泛应用的背景下显得尤为重要。传统的分类方法往往忽视了影像的空间结构信息,导致分类精度不高。随着IKONOS、SPOT5、COSMOS等高分辨率卫星影像的普及,对影像的纹理特征提取成为提高分类精度的关键。常见的纹理分析方法包括自相关函数分析、行程长度分析、灰度共生矩阵分析、傅立叶频谱分析、小波分析以及分形分析等。
在Matlab环境中,实施分水岭算法通常涉及以下步骤:
1. 图像预处理:将彩色图像转化为灰度图像,以减少计算复杂度。这可以通过`rgb2gray`函数实现。
2. 直接应用分水岭变换:通过`watershed`函数对灰度图像进行分水岭变换。然而,直接应用可能会导致过度分割,例如花坛、广场、水塘等地物被过分划分。
3. 改进的分水岭算法:为解决过度分割问题,需要增强图像对比度。这可以通过构造结构元素(如圆盘形状的结构元素`strel('disk',15)`),然后应用顶帽变换(`imtophat`)和底帽变换(`imbothat`)来实现。接着,使用`imsubtract`和`imadd`函数结合这两种变换的结果,以增强物体和背景的对比度。再通过`imcomplement`函数增强谷点,最后使用`imextendedmin`和`imimposemin`检测并标记谷点,从而进行更精确的分水岭变换。
通过以上步骤,可以实现对遥感图像的精细化分割,提高对地物识别的准确性和清晰度。在实验中,应确保使用合适的Matlab版本(如本例中的Matlab7.0),并在适宜的操作系统环境下(如Windows 7)进行。同时,实验报告的撰写也是重要的一环,它能展示实验过程、结果和理解。
分水岭算法是遥感图像处理中的有力工具,通过Matlab的实现,我们可以有效地提取和分析图像信息,为遥感影像的分类和分析提供强大的支持。理解并掌握这一算法,对于提升遥感数据的应用价值具有深远的意义。
2024-09-05 11:11:34
3.05MB
matlab
1