上传者: c419907414chen
|
上传时间: 2024-10-08 20:08:03
|
文件大小: 1.62MB
|
文件类型: PDF
基于可调谐半导体激光吸收光谱(TDLAS)技术的气体检测系统,因气体吸收产生的二次谐
波信号携带浓度信息,通过浓度反演可实现浓度信息的提取。本文简要介绍了TDLAS气体检测系
统,对Matlab下完成的曲线拟合和反演算法仿真以及FPGA内部设计实现的反演算法进行了详细
描述,并在一氧化碳检测系统下利用多组待测浓度完成了反演算法的验证。
可调谐半导体激光吸收光谱(TDLAS)是一种先进的气体检测技术,它利用特定波长的激光穿透气体样本,当激光与气体分子相互作用时,会发生吸收现象,特别是气体分子对激光的吸收强度与气体的浓度有直接关系。TDLAS技术能够精确地测量气体的浓度,尤其适用于监测大气、工业生产过程中的有害或有价值气体,如一氧化碳等。
在TDLAS气体检测系统中,核心步骤是浓度反演,即从测量到的吸收信号(通常表现为二次谐波信号)中提取出气体的浓度信息。这一过程通常涉及到复杂的数学模型和算法。在MATLAB环境下,可以进行曲线拟合和反演算法的仿真。MATLAB作为强大的数学计算和仿真工具,提供了丰富的函数库和优化算法,能有效处理非线性拟合问题,构建吸收光谱与气体浓度之间的关系模型。
具体来说,首先需要对测量得到的吸收光谱数据进行预处理,包括噪声过滤、基线校正等,然后利用MATLAB的曲线拟合工具,如非线性最小二乘法,找到最佳拟合曲线。接着,通过反演算法,如Levenberg-Marquardt法或直接搜索法,反推出气体浓度。在反演过程中,可能需要迭代求解,以确保浓度估计的准确性。
文章中提到了FPGA(Field-Programmable Gate Array)内部设计实现的反演算法。FPGA是一种可编程的硬件平台,它能快速并行执行计算任务,特别适合实时和高效率的系统。将反演算法部署到FPGA上,可以大大提高系统的响应速度和检测效率,同时减小对外部处理器的依赖。
实验部分,研究者在一氧化碳检测系统中,利用多组不同浓度的一氧化碳样本对反演算法进行了验证。结果显示,浓度反演的吻合度达到了99.9%,这表明反演算法非常准确,能满足实际应用的需求。这种基于MATLAB的前期数据分析和误差控制方法不仅适用于TDLAS系统,还可以推广到其他领域的设备研制和系统综合测试。
总结而言,TDLAS气体检测技术结合MATLAB和FPGA的优势,实现了高效、精确的气体浓度测量。MATLAB提供了便捷的数据处理和算法仿真环境,而FPGA则确保了实时的反演计算能力。这种技术对于环境保护、安全生产、科学研究等领域具有重要的实用价值。