文件名:Realistic Car Controller v3.95.unitypackage Realistic Car Controller 是一款在 Unity 中用于实现高度真实感的车辆控制和物理效果的插件。它提供了一整套车轮物理、动力学、碰撞检测以及其他重要功能,能够帮助开发者轻松创建逼真的汽车模拟或赛车游戏。以下是该插件的一些主要特点和功能: 主要特点: 真实的物理模拟: 提供高度精确的车轮物理,能够模拟真实的轮胎与地面之间的互动。 支持复杂的悬挂系统,可以根据地形变化调整汽车的行驶方式。 引擎、转向、刹车和加速等系统都基于真实物理算法,提供更真实的驾驶体验。 多种驾驶模式: 提供不同的控制方式,适合不同类型的游戏。包括传统的赛车游戏控制、模拟驾驶以及更轻松的街机式驾驶控制。 支持手动和自动变速器,用户可以自由设置。 高级车体控制: 支持不同类型的汽车(如运动型、SUV、卡车等)定制,可以调整每辆车的重量、引擎力量、车轮配置等参数。 车辆能够根据不同的地面情况(如草地、雪地、泥地等)表现出不同的牵引力和滑移效果。 细致的视觉效果: 支持实时反射..
2025-04-08 09:36:40 34.93MB Unity插件
1
非线性模型预测控制(NMPC)原理详解及四大案例实践:自动泊车、倒立摆上翻、车辆轨迹跟踪与四旋翼无人机应用,nmpc非线性模型预测控制从原理到代码实践 含4个案例 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。 ,nmpc非线性模型预测控制; 原理; 代码实践; 案例; 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。,"NMPC非线性模型预测控制:原理与代码实践,四案例详解自动泊车、倒立摆、车辆轨迹跟踪与四旋翼无人机控制"
2025-04-07 22:55:22 442KB
1
MPC模型预测控制:从原理到代码实现,涵盖双积分、倒立摆、车辆运动学与动力学跟踪控制系统的详细文档与编程实践,MPC模型预测控制原理到代码实现:双积分、倒立摆、车辆运动学与动力学跟踪控制案例详解,mpc模型预测控制从原理到代码实现 mpc模型预测控制详细原理推导 matlab和c++两种编程实现 四个实际控制工程案例: 双积分控制系统 倒立摆控制系统 车辆运动学跟踪控制系统 车辆动力学跟踪控制系统 包含上述所有的文档和代码。 ,MPC模型预测控制; 原理推导; MATLAB实现; C++实现; 案例: 双积分控制系统; 倒立摆控制系统; 运动学跟踪; 动力学跟踪控制系统; 文档与代码。,MPC模型预测控制:原理详解与代码实现全解析
2025-04-07 15:19:48 9.18MB
1
阿克曼转向车辆运动学模型建立与Simulink仿真验证(附详细建模过程说明文档),基于阿克曼转向的车辆运动学模型建立与Simulink仿真验证(版本为MATLAB Simulink 2018b),基于阿克曼转向的车辆运动学模型 在simulink中建立车辆运动学模型,为路径规划奠定基础,能够更好的检验简化的运动学模型反映运动过程的准确性。 包括:1、simulink仿真验证(版本为2018b) 2、说明文档--详细的建模过程 ,基于阿克曼转向的车辆运动学模型; simulink仿真验证(2018b); 建模过程说明文档。,阿克曼转向模型:基于Simulink的运动学仿真验证及详细建模流程说明
2025-04-07 13:12:14 765KB
1
智能车辆路径跟踪控制是自动驾驶和无人驾驶技术中的关键环节,它涉及到车辆如何准确地沿着预设路线行驶。在本主题中,我们将深入探讨两种主要的控制算法:纯跟踪控制与Stanley控制算法,以及可能涉及的其他线性相关算法。这些算法通常在MATLAB环境中进行仿真和开发。 纯跟踪控制是一种基础的车辆路径跟踪方法,它通过比较车辆的实际位置与期望轨迹之间的偏差来调整车辆的转向角。这种控制策略的核心在于设计合适的控制器,如PID控制器,以减小位置误差并确保车辆稳定行驶。在MATLAB中,可以通过建立车辆模型,定义目标路径,然后设置控制器参数来实现这种控制策略的仿真。 Stanley控制算法是一种更先进的路径跟踪方法,由Christopher Thrun、Michael Montemerlo和Dmitry Kononenko于2005年提出。它考虑了车辆的前向传感器(如激光雷达或摄像头)提供的信息,以确定车辆的横向和纵向偏差。Stanley算法将这两个偏差转换为方向盘角度,使车辆能够无滑移地跟踪路径。在MATLAB中,实现Stanley控制通常包括三个步骤:获取传感器数据、计算偏差和转换为方向盘命令。 除了这两种控制算法,还有其他线性相关算法可以用于路径跟踪,如LQR(线性二次调节器)和模型预测控制(MPC)。LQR通过最小化一个性能指标(如误差和控制输入的能量)来设计控制器。MPC则是一种前瞻性的控制策略,它考虑到未来多个时间步的预期行为,以优化控制决策。 在提供的压缩包文件中,"智能车辆路径跟踪.html"可能是对这些概念的详细解释,或者是一个MATLAB仿真演示的说明。而"3.jpg"、"2.jpg"、"1.jpg"可能是相关算法的示意图或仿真结果的截图,可以帮助理解控制算法的工作原理。"智能车辆路径跟踪控制纯.txt"可能是纯跟踪控制算法的MATLAB代码,供学习和参考。 智能车辆路径跟踪控制是自动驾驶技术的重要组成部分,涉及到控制理论、传感器融合和车辆动力学等多个领域。通过MATLAB这样的工具,我们可以对这些复杂的算法进行建模、仿真和优化,为实际应用提供坚实的基础。
2025-04-07 07:39:51 2.4MB matlab
1
基于二阶自抗扰ADRC和MPC的路径跟踪控制,使用ADRC对前轮转角进行补偿,对车辆的不确定性和外界干扰具有一定抗干扰性,有参考lunwen,Carsim版本为2019,Matlab版本为2021 ,基于二阶自抗扰ADRC; MPC路径跟踪控制; 车辆不确定性抗干扰性; 外界干扰补偿; 参考lunwen; Carsim 2019版本; Matlab 2021版本,基于二阶自抗扰ADRC与MPC的车辆路径跟踪控制研究 在现代汽车电子控制系统中,路径跟踪控制是实现车辆自动驾驶的关键技术之一。随着自动驾驶技术的不断发展,对车辆路径跟踪控制系统的性能要求也愈来愈高,尤其是在面对车辆自身不确定性和复杂多变的外部环境时,如何确保车辆能够准确、稳定地跟踪预定路径成为了一项重要课题。为了提高车辆在真实道路条件下的行驶稳定性和安全性能,研究者们开始探索将二阶自抗扰控制(ADRC)与模型预测控制(MPC)相结合的先进控制策略。 自抗扰控制(ADRC)是一种基于对象动态模型的控制技术,它通过实时估计和补偿系统的不确定性和外部干扰来提高系统的鲁棒性。在路径跟踪控制中,ADRC可以有效地补偿由车辆的动态特性不一致以及复杂外部环境引起的不确定性,从而提高车辆路径跟踪的精确性和稳定性。 模型预测控制(MPC)是一种基于优化控制理论的先进控制策略,它通过预测未来一段时间内系统的动态行为,然后在线求解最优控制序列以实现对系统未来行为的指导。MPC具有良好的处理约束能力和优化多目标问题的能力,适用于处理复杂的路径跟踪任务。 将ADRC和MPC相结合,可以充分发挥两者的优势。ADRC的强鲁棒性能可以处理车辆在复杂环境下的不确定性,而MPC的预测和优化能力则有助于实现对车辆未来路径的精确控制。这种结合使用的方法不仅能够保证车辆在受到不确定性和外部干扰时仍能保持稳定跟踪预定路径,而且还可以在满足各种约束条件的前提下优化车辆的行驶性能。 为了验证和分析所提出的控制策略的实际效果,研究中使用了Carsim软件进行车辆模型的搭建和仿真实验。Carsim作为一个被广泛认可的车辆动力学仿真平台,能够提供精确和高保真的车辆模型和环境模拟。同时,实验中的控制算法实现则是通过Matlab软件及其相应的控制系统工具箱来完成的。Matlab作为一个功能强大的数学计算和仿真平台,为控制算法的开发和测试提供了便利。 在所提供的压缩包文件中,包含了多个与基于二阶自抗扰ADRC和MPC路径跟踪控制相关的文档,这些文档涵盖了研究的引言、车辆稳定性与抗干扰性分析、以及具体的控制策略研究等内容。通过这些文档,研究人员可以深入理解该控制策略的设计理念、实现方法和仿真实验结果,为未来该领域的进一步研究和应用提供了宝贵的资料和参考。 基于二阶自抗扰ADRC和MPC的路径跟踪控制为车辆自动驾驶提供了新的解决方案,它不仅提升了车辆路径跟踪的稳定性和精确性,还增强了系统对外界干扰的抵抗能力。随着相关技术的不断完善和成熟,我们有理由相信,这一控制策略将在未来的自动驾驶技术中扮演重要的角色。
2025-04-06 22:03:34 2MB
1
内容概要:本文详细介绍了利用Carsim和Simulink构建弯道速度预警系统的全过程。首先,通过Carsim模拟车辆动力学行为,获取关键参数如横向加速度、横摆角速度等;然后在Simulink中建立侧翻和侧滑预警模型,分别采用sigmoid函数和扩展卡尔曼滤波器进行风险评估;最后制定分级预警策略,确保及时有效的安全提示。文中还分享了许多实际操作中的经验和注意事项,如参数调优、数据同步等问题。 适合人群:汽车工程领域的研究人员和技术人员,尤其是对车辆安全系统感兴趣的开发者。 使用场景及目标:适用于希望深入了解车辆弯道安全预警系统的设计与实现的研究人员。目标是掌握如何通过联合仿真平台提高车辆在复杂路况下的安全性。 其他说明:文章不仅提供了详细的理论解释和技术细节,还包括大量实践经验,帮助读者更好地理解和应用相关技术。此外,作者强调了仿真与实际情况之间的差异,并给出了具体的优化建议。
2025-04-06 20:47:20 125KB
1
基于Matlab的局部路径规划算法研究:结合阿克曼转向系统与DWA算法的车辆轨迹优化与展示,动态、静态障碍物局部路径规划(matlab) 自动驾驶 阿克曼转向系统 考虑车辆的运动学、几何学约束 DWA算法一般用于局部路径规划,该算法在速度空间内采样线速度和角速度,并根据车辆的运动学模型预测其下一时间间隔的轨迹。 对待评价轨迹进行评分,从而获得更加安全、平滑的最优局部路径。 本代码可实时展示DWA算法规划过程中车辆备选轨迹的曲线、运动轨迹等,具有较好的可学性,移植性。 代码清楚简洁,方便更改使用 可在此基础上进行算法的优化。 ,动态障碍物; 静态障碍物; 局部路径规划; MATLAB; 自动驾驶; 阿克曼转向系统; 车辆运动学约束; 几何学约束; DWA算法; 轨迹评分; 实时展示; 代码简洁。,基于DWA算法的自动驾驶局部路径规划与车辆运动学约束处理(Matlab实现)
2025-03-31 22:32:23 132KB 哈希算法
1
车辆主动悬架防侧翻控制研究:基于Simulink与Carsim联合仿真试验的效果分析,车辆主动悬架防侧翻控制:Simulink与Carsim联合仿真试验及力矩分配策略实现侧倾稳定性,车辆主动悬架防侧翻控制 利用Simulink和Carsim进行联合仿真,搭建主动悬架以及防倾杆模型,在不同转角工况下进行仿真试验,设置滑模等控制器计算维持车辆侧倾稳定性所需的力矩,将力矩分配到各个悬架实现控制效果。 控制效果良好,保证运行成功。 ,车辆主动悬架防侧翻控制; 联合仿真; 主动悬架模型; 防倾杆模型; 滑模控制器; 侧倾稳定性; 力矩分配。,联合仿真验证:主动悬架防侧翻控制策略优化
2025-03-30 19:51:37 496KB css3
1
数据包包含中国北京、上海、深圳9个充电桩数据,原始文件包含桩位、时间、车辆状态、SOC(充电状态)、电流、电压、温度等信息,数据点以约18s为单位采样一年半,处理后的数据包含时间和充电功率,分辨率为18s和1h。 在当前社会发展背景下,随着新能源汽车行业的飞速发展,电动汽车充电站数据的重要性日益凸显。本数据包详细记录了中国一线城市北京、上海和深圳的九个充电桩的数据,涵盖了从桩位分布到电动汽车充电过程中的实时状态等多个维度。数据集详细记录了包括桩位、时间、车辆状态、SOC(充电状态)、电流、电压和温度等关键信息,是进行数据分析和机器学习的重要基础资源。 通过对这些数据进行分析,可以对充电站的使用情况、充电设备的性能表现以及电动汽车的充电行为等有一个全面的了解。例如,时间序列数据可以帮助我们了解充电站的高峰使用时段,从而优化充电站的电力调度和充电桩的布局规划。车辆状态和SOC数据则可以反映出电动汽车在不同时间点的充电需求和充电行为模式。此外,电流、电压和温度等数据对于评估充电设备的运行状况,预防潜在故障,保障充电安全具有重要意义。 原始数据文件以约每18秒为一个数据采样点,连续采集了一年半的时间序列数据。这种高频采样的原始数据对于研究充电站的短期运行模式和电动汽车的充电习惯具有较高的价值。处理后的数据则以18秒和1小时为分辨率,提供了时间和充电功率信息。高分辨率数据允许我们更细致地分析短时间内的变化趋势,而低分辨率数据则有助于捕捉长期的运行规律和模式。 这份数据集不仅可以用于对充电站日常运营的监测与管理,还能够被广泛应用于机器学习和大数据分析领域。例如,利用机器学习算法,可以从海量数据中识别出影响充电效率的关键因素,预测充电需求,优化充电站的运维策略,甚至可以为自动驾驶汽车的充电路径规划提供决策支持。此外,数据集还可以用来评估不同品牌和型号电动汽车的性能表现,为消费者提供更详尽的购车参考。 这份包含详尽信息的电动汽车充电站数据集,不仅为城市能源管理提供了有力的数据支持,也为新能源汽车行业的研究者和开发者提供了宝贵的实验材料,有助于推动整个行业的持续健康发展。
2025-03-29 15:29:02 248.96MB 数据集 机器学习
1