在本文中,我们将深入探讨基于Halcon的双模板匹配技术,这是一种在计算机视觉领域中广泛使用的图像处理方法。Halcon是一种强大的机器视觉软件,提供了多种高级的图像处理算法,包括模板匹配,它允许用户在图像中查找并识别特定的模式。 双模板匹配是Halcon中的一个特色功能,它扩展了传统的单模板匹配,可以同时比较两个模板来确定最佳匹配位置。这种方法在寻找相似但可能有微小差异的图像区域时非常有用,比如在质量控制、产品检测或者自动驾驶场景中。 我们需要理解模板匹配的基本概念。模板匹配是将一个已知的小图像(模板)与大图像中的每个区域进行比较,找到最相似的区域。在Halcon中,这通常通过计算模板和图像区域之间的相似度度量(如互相关或均方误差)来实现。 在“Halcon双模板识别.rar”压缩包中,包含有Halcon的源代码和用于测试的图片。这些源代码展示了如何设置和执行双模板匹配的过程。在运行代码之前,你需要确保修改源代码中的图片路径,以指向实际存放模板和测试图片的位置。如果不进行路径修改,程序可能无法正确读取图像,导致运行错误。 双模板匹配的步骤通常包括以下部分: 1. **模板准备**:选择两个代表性的模板图像,它们代表了目标对象可能出现的不同状态或角度。 2. **预处理**:根据实际应用,可能需要对输入图像进行灰度化、直方图均衡化或滤波等预处理操作,以提高匹配效果。 3. **匹配操作**:在Halcon中,调用相应的函数(如`matchTemplateTwo`),传入主图像、两个模板图像以及匹配参数,如相似度阈值。 4. **评估匹配结果**:Halcon会返回匹配的结果,包括最佳匹配位置、匹配度分数等信息。用户可以根据这些信息决定是否接受匹配结果。 5. **后处理**:根据需求,可能需要进一步处理匹配结果,例如排除边缘区域的匹配或结合多个匹配结果。 在实际应用中,双模板匹配可以提高识别的鲁棒性和准确性,特别是在面对物体变形、光照变化或轻微遮挡的情况时。然而,也需要注意,增加模板数量会提高计算复杂性,可能导致处理时间变长。 Halcon的双模板匹配功能为解决复杂图像识别问题提供了一种强大工具。通过理解其工作原理和正确使用源代码,我们可以有效地实现和优化这一过程,从而在各种应用场景中实现精准的图像匹配。
2025-08-20 15:58:04 7.39MB halcon 双模板匹配
1
在激光技术领域,增透膜是一种用于减少光学表面反射的技术,目的是提高光学系统的传输效率和成像质量。文章中提到的“倍频激光薄膜”涉及特定波长的增透膜设计,用于1.06微米和0.53微米这两个特定波长的激光。 对于增透膜的设计,需要考虑光波在介质分界面上的反射与透射问题。根据光的波动理论,当光波从一种介质入射到另一种介质时,会发生反射和折射。为了使激光在特定波长下透过薄膜,需要使得入射光在薄膜上下表面的反射波彼此相消,即实现相消干涉。这种技术通常利用多层膜结构,其中每一层的折射率和厚度都是经过精心设计的,以满足特定条件。 文章中提到的“等厚度三层膜制备双波长增透膜”,意味着每一层膜的光学厚度相同,这使得相位差在两个特定波长下同时达到零反射条件。光学厚度是指膜层厚度与其折射率的乘积,而相位厚度是指在膜层中光波传播时所经历的相位变化。 文章中还提到了“剩余反射率为0.1~0.2%”,这个数值是评估增透膜性能的一个重要指标,其值越小,表示反射率越低,透射率越高,增透效果越好。剩余反射率的计算涉及到膜层材料的折射率以及膜层的几何厚度。 此外,文章提到了单层膜、"T"计算型膜、宽带膜等其他类型的增透膜,它们由于增透波段窄,无法满足在1.06微米和0.53微米两个波长同时增透的要求。这表明,对于特定的应用,如倍频激光技术,需要定制化的增透膜解决方案。 文章还涉及了计算增透膜设计的公式和方法,其中引用了特定的数学公式来确定膜层的折射率和厚度。例如,通过满足零反射条件的公式,可以确定增透膜的折射率和厚度,从而使得在1.06微米和0.53微米这两个波长上达到增透效果。 通过文章中提到的反射曲线图示,可以形象地看到不同膜层折射率组合下光谱曲线的变化。从曲线图可以看出,折射率的不同选择会对两个特定波长的反射率产生影响,进而影响整个光谱曲线的形态,因此在实际设计中需要仔细选择合适的材料和膜层参数。 文章涉及的增透膜知识点主要集中在激光薄膜的多层膜设计,包括等厚度三层膜的光学厚度和相位厚度的计算、特定波长下的相消干涉条件,以及如何利用特定的数学公式和图形分析来设计出在特定波长下具有优良增透效果的薄膜。这些技术对提高激光系统的性能具有重要作用,尤其是在需要对多个特定波长同时增透的应用场景中,如倍频激光薄膜技术中,它们的贡献尤为显著。
2025-08-19 20:34:50 1.57MB
1
内容概要:本文详细介绍了伺服系统中双线性变换离散化陷波滤波器的设计与优化。首先解释了双线性变换的基本原理,即如何将连续时间的陷波滤波器转换为离散时间的传递函数。接着讨论了频率补偿机制,解决了双线性变换导致的频率偏差问题。文中提供了具体的Python代码示例,演示了从参数设置、传递函数构建到双线性变换的具体过程。此外,还进行了仿真验证,通过Matlab和Python代码展示了滤波器的效果,证明了频率补偿的有效性和必要性。最后,强调了陷波滤波器在伺服系统中的重要性,特别是在抑制特定频率干扰方面的作用。 适合人群:从事伺服系统设计与优化的技术人员,尤其是对滤波器设计有需求的研发工程师。 使用场景及目标:适用于需要精确控制频率特性的伺服控制系统,如工业自动化设备、机器人等领域。目标是提高系统的抗干扰能力和稳定性,确保在特定频率点上的深度衰减,从而消除不期望的频率成分。 其他说明:文中提供的代码和方法可以直接应用于实际项目中,同时提醒了在低采样率情况下需要注意的问题,并提出了动态调整频率的解决方案。
2025-08-15 17:18:37 388KB
1
五七次谐波反电势PMSM Simulink模型:考虑双闭环(PI)控制与传统死区延时补偿的永磁同步电机精确仿真系统,基于五七次谐波反电势的PMSM Simulink模型构建与应用,该模型为考包含五七次谐波反电势PMSM的simulink模型。 模型架构为PMSM的传统双闭环(PI)控制(版本2018b),模型中还包括以下模块: 1)1.5延时补偿模块 2)死区模块 市面上的永磁同步电机 PMSM的反电势不可能为纯净的正弦波,而是会存在一定谐波。 这些谐波中,五七次谐波反电势的谐波会相对较大,因此会在电机相电流中产生一定的谐波电流。 而simulink中自带的PMSM模型并未考虑电机反电势的谐波成分,因此需要自己搭建相应的电机模型。 该电机模型包含了五七次谐波反电势,因此其电机模型更接近于实际的电机模型。 系统已经完全离散化,与实验效果非常接近(如果需要关闭谐波,可直接在仿真参数中,把谐波设置为0)。 simulink仿真模型以及相应的参考文献 ,五七次谐波反电势PMSM; 模型架构; 传统双闭环控制; PI控制; 延时补偿模块; 死区模块; 谐波电流; 离散化模型; 仿真参
2025-08-15 10:56:03 1.59MB 数据结构
1
NPC三电平逆变器 SVPWM plecs c语言 电压电流双闭环控制 SVPWM使用c-script模块使用c语言编写 工况如下 直流电压Vdc 800V 负载侧电压幅值控制到311V具体波形如下图所示 电压电流均完美控制 三电平逆变器是一种电力电子设备,能够在将直流电能转换为交流电能的同时,保持较低的开关损耗以及较好的输出波形质量。特别是NPC(Neutral Point Clamped)三电平逆变器,它通过在逆变桥臂中点增加两个电容来实现电平的中性点钳位,有效避免了逆变器输出电压的过冲,从而提高了系统的稳定性和可靠性。 SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)是一种高效的空间矢量控制技术,常用于多电平逆变器的控制中。SVPWM技术可以提升逆变器的效率,减少开关损耗,并能够提供较为平滑的输出波形,是电力电子领域中的一个重要研究方向。 在实际应用中,三电平逆变器的控制需要精确的算法支持,C语言因其执行效率高、易于操作硬件等优点而常被用于实现这些控制算法。在本次研究的背景下,使用了Plecs软件,该软件是电力电子电路仿真领域的一个强大工具,支持基于模块的电路设计和仿真。利用Plecs中的C-script模块,工程师可以将用C语言编写的控制算法直接嵌入到仿真模型中,实现了对三电平逆变器的精确控制。 本研究中,对电压电流双闭环控制的实现,意味着系统不仅能够控制输出电压,还能精确控制输出电流。这种控制策略在保证输出电压稳定性的同时,也能确保负载侧的电流跟随其设定值,从而提高了系统的动态响应速度和负载适应能力。 在所给定的工况中,直流电压为800V,而负载侧电压幅值需控制到311V。在逆变器的设计和应用中,保持输出电压稳定是极其重要的。本研究通过精确控制和调制,确保了负载侧电压幅值能够稳定在311V,这对于高质量的电能输出尤为关键。 通过研究中的具体波形图,可以看出电压和电流都得到了很好的控制。这意味着逆变器的输出波形既平滑又稳定,这对于减少电网干扰、提高用电设备的使用寿命和运行效率具有重要意义。 在仿真和分析的过程中,相关的文件如“三电平逆变器技术分析与实践在科技.doc”、“三电平逆变器语言电压电流双闭环控制使用.html”、“深入探讨三电平逆变器技术及其在中的语言实现一引.txt”等,提供了丰富的技术分析和实践案例,帮助研究者深入理解三电平逆变器的控制原理和应用实践。 此外,图像文件“4.jpg”、“1.jpg”、“3.jpg”、“2.jpg”可能是逆变器控制过程中关键波形的截图,这些图像文件能够直观地展示电压和电流的控制效果,为分析和优化逆变器性能提供了可视化数据支持。 三电平逆变器在电力电子系统中扮演着核心的角色。通过采用SVPWM技术,利用C语言和Plecs仿真软件,以及通过实施电压电流双闭环控制策略,能够实现对逆变器输出波形的有效控制,从而满足工业和民用领域对高质量电能的需求。而相关的技术文档和图像资料则为研究者提供了深入探讨和分析三电平逆变器技术的宝贵资源。
2025-08-14 22:35:17 627KB
1
"PFSense 2.0 双线负载、端口映射和回流、指定出口访问的设置" 本文主要介绍了使用 PFSense 2.0 实现双线负载、端口映射和回流、指定出口访问的设置。作者使用了两条 ADSL 宽带,一条是电信 ADSL 的 PPPOE 拨号,另一条是电信 ADSL 的固定 IP。作者首先介绍了网络端口的设置,包括 WAN 和 OPT1 的设置,并说明了在 PFSense 2.0 中如何设置双线负载。 双线负载的设置可以在 System --> Routing 中实现。作者提供了详细的步骤和截图,介绍了如何设置 WAN 和 OPT1,如何在网关中设置双线负载。 端口映射和回流的设置可以在 Firewall-->NAT 中实现。作者介绍了如何在 PFSense 2.0 中实现端口映射和回流,并提供了详细的步骤和截图。 指定网关出口访问的设置可以在 System-->Advanced-->Firewall/NAT 中实现。作者介绍了如何在 PFSense 2.0 中实现指定网关出口访问,并提供了详细的步骤和截图。 本文提供了详细的步骤和截图,帮助读者快速掌握 PFSense 2.0 双线负载、端口映射和回流、指定出口访问的设置。 知识点总结: 1. PFSense 2.0 的双线负载设置可以在 System --> Routing 中实现。 2. 端口映射和回流的设置可以在 Firewall-->NAT 中实现。 3. 指定网关出口访问的设置可以在 System-->Advanced-->Firewall/NAT 中实现。 4. 在 PFSense 2.0 中,需要将动态的外网端口放在第一个 WAN 口,其它的外网端口放在 OPT 的端口。 5. PFSense 2.0 支持回流,但默认设置是禁用回流的。 6. 在设置双线负载时,需要编辑网关组和 WAN 设置。 7. 在设置端口映射和回流时,需要在 Firewall-->NAT 中添加规则。 8. 在设置指定网关出口访问时,需要在 System-->Advanced-->Firewall/NAT 中添加规则。 总结来说,本文提供了详细的步骤和截图,帮助读者快速掌握 PFSense 2.0 双线负载、端口映射和回流、指定出口访问的设置。
2025-08-12 22:28:56 1.37MB PFSense
1
内容概要:本文介绍了在Simulink环境中构建并优化双区域负荷频率控制模型的方法,重点在于将风电机组纳入传统两区域互联模型中,通过AGC(自动发电控制)进行二次调频。首先,建立了双区域模型,模拟电力系统的动态行为。接着,在模型中加入了风电机组,考虑其输出波动对系统稳定性的影响。然后,引入AGC调频技术,通过编写代码实现自动控制,确保电力系统的稳定运行。最后,展示了模型的高效运行及其结果,验证了模型的有效性,并提出了未来的研究方向。 适合人群:从事电力系统研究、仿真建模以及自动化控制领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解电力系统稳定性和效率提升方法的专业人士,特别是那些关注风电接入电网后的调频控制策略的人群。目标是提供一种有效的手段来评估和改进电力系统的性能。 其他说明:文中提到的模型可以直接在Simulink中运行,运行速度快,便于进行更多的模拟和测试。
2025-08-09 09:21:09 575KB
1
内容概要:本文探讨了基于下垂控制的三相逆变器电压电流双闭环控制在电力电子领域的应用。首先介绍了下垂控制的原理及其在分布式发电系统中的优势,如自动调节输出电压和频率,实现系统自动并网和负载均衡。接着详细解释了电压电流双闭环控制的工作机制,即电压环控制输出电压的幅值和相位,电流环控制输出电流的大小和相位,确保逆变器有良好的输出特性和快速的动态响应。然后,利用MATLAB/Simulink和PLECS等工具建立了仿真模型,设置了不同的负载和输入条件,进行了SPWM调制,并配置了PI控制器和PI+前馈控制器。最后,通过仿真实验验证了该控制策略的有效性和可靠性,展示了逆变器的良好输出特性和动态响应以及分布式电源间的负载均衡效果。 适合人群:从事电力电子、新能源发电系统设计与研究的专业人士和技术人员。 使用场景及目标:适用于需要深入了解三相逆变器控制策略的研发人员,旨在提升分布式发电系统的效率和可靠性。 其他说明:文中提到的仿真工具和控制方法为实际工程应用提供了重要参考,有助于进一步优化控制系统性能。
2025-08-08 16:33:41 537KB
1
在电子工程领域,DAB(Dual Active Bridge)即双活桥变换器是一种高效、灵活的电能转换装置,它能在多个电源与负载之间提供双向能量流动的控制。在给出的文件信息中,DAB仿真模型通过采用电压电流双闭环控制系统,以及单移相控制策略,实现对输入电压和输出电压的精确控制。 电压电流双闭环控制是一种先进的控制方式,它通过监控和调节电压以及电流两个参数,确保系统的稳定性和高效性。在DAB系统中,这种控制方法有助于平衡输入与输出端的能量,提高系统的响应速度和动态性能。单移相控制则是一种调节功率传输的方法,通过改变相位差来控制功率流动的方向和大小,实现对电能的精确控制。 根据文件描述,该DAB仿真模型的输入电压为700V,输出电压设定为350V,并且具有可调性。这意味着该系统可以通过调节内部参数来适应不同的工作环境和负载要求。输出电压的稳定性对于整个系统的性能至关重要,特别是在需要精密电压控制的应用场合。 主电路部分是DAB系统的核心,它负责实现电能的转换和传输。文件中提到的主电路及输出波形,可能指的是模拟或实际的电路设计及其在工作时产生的电压和电流波形图。电路设计的优劣直接关系到系统性能和效率,包括功率因数、转换效率、热损失等多个关键性能指标。 从文件名列表中,我们可以看到有多个文件涉及到了DAB仿真模型的各个方面。例如,“仿真模型技术分析随着科技的飞速发展电子.txt”和“仿真模型研究与应用一引言随着电力电子技术的不断.txt”可能是对DAB技术发展背景和应用前景的概述;“仿真模型电压电流双闭环控制的探索与实现在数字电路.txt”和“仿真模型解析技术深度剖析在当今数字化时代技术发.txt”可能涉及双闭环控制策略和数字技术在DAB中的应用;“在广播领域中仿真模型的建立是非.txt”可能探讨了DAB在广播通信领域的应用;而“仿真模型是一种基于电压电流双闭环单移相控制.doc”和“仿真模型研究与应用一引言随着电力电子技术的不断.txt”可能包含了对整个DAB系统及其控制方法的详细研究和分析。 DAB仿真模型在模拟和实际操作中都扮演着重要的角色,其高效的能量转换和精确的控制策略,使它成为电力电子技术领域中不可或缺的一环。通过对电压电流双闭环和单移相控制技术的研究和应用,DAB系统不仅提高了电子设备的性能,而且为各种电子和通信设备的优化和创新提供了新的可能。
2025-08-05 22:54:50 175KB
1
内容概要:本文档介绍了如何在Ubuntu系统上进行VSomeIP(车辆通信中间件)的环境搭建与应用实现。详细讲解了从虚拟机网络配置、vsomeip协议栈编译、Helloworld样例编译及其双机通讯配置、Wireshark数据包抓取分析等多个步骤,最终成功实现了基于VSomeIP的请求与响应流程以及订阅通知等功能。整个教程适合对车载网络感兴趣的初学者参考学习。 适合人群:汽车电子、嵌入式Linux开发者;对于VSOMEIP感兴趣的技术新人。 使用场景及目标:通过实际动手实验加深理解车辆内部网络通信的工作原理和技术细节;掌握基本的VSomeIP编程技能以及利用Wireshark工具分析网络流量的方法。 其他说明:本教程提供详细的步骤指导,涵盖环境准备、代码编写、程序执行与结果验证全流程。此外还特别指出了一些容易忽视却至关重要的设置点,比如防火墙关闭、虚拟机桥接模式连接、组播地址加入路由表等。
2025-08-05 11:31:34 3.31MB 嵌入式Linux 车载通信 Wireshark Ubuntu
1