内容概要:本文档详细介绍了大模型时代的具身智能技术,从历史发展、核心技术到实际应用,涵盖物体感知、场景感知、行为感知、表达感知等多个方面。文档探讨了具身感知、推理和执行的关键任务,并深入分析了具身智能的现状与未来发展方向,特别是在任务规划、导航、技能学习等领域的最新进展。此外,文档还介绍了多模态大模型在具身智能中的应用,并讨论了构建具身智能体所面临的技术挑战。 适合人群:具备一定技术背景,对机器人技术、人工智能和大模型感兴趣的工程师和研究人员。 使用场景及目标:①了解具身智能的基础知识和发展趋势;②探索具身智能在不同领域的应用,如家用机器人、工业机器人等;③为具身智能的研发和应用提供技术指导和参考。 其他说明:本文档通过详尽的技术分析和实例展示了具身智能的前沿技术,强调了多模态大模型在具身智能中的重要作用,并指出了未来研究的关键方向和技术瓶颈。
2025-04-23 14:28:03 5.98MB 机器人技术
1
设计Boost-Flyback单级功率因数校正(Power factor correction,PFC)变换器主要应着眼于两点:一是功率因数(Power factor,PF)值要求;二是直流母线电压。为了给设计提供依据,本文详细推导了其功率因数及储能电容电压表达式,分析了它们与电路参数的关系,定量地给出变换器达到所需PF值的条件,指出当后NFlyback工作在电流断续模式(Discontinuous current mode,DCM)时,储能电容电压不随负载变轻而上升,避免了功率器件电压应力过高的问题。最
2025-04-23 14:06:20 282KB 工程技术 论文
1
2011-2019年各省乡镇综合文化站机构数数据 1、时间:2011-2019年 2、来源:国家统计j、统计nj 3、指标:行政区划代码、地区、年份、乡镇综合文化站机构数 4、范围:31省
2025-04-22 20:40:51 17KB
1
在这篇文章中,阐述了陆面过程对天气,气候和大气环流的影响以及陆面过程模式在大气数值模拟中的重要性;回顾了陆面过程模式的发展历史;分析了一些陆面过程模式之间的主要结构差别;讨论了目前陆面过程模式的发展水平和未来的发展方向;简述了大气中尺度模式与陆面过程耦合的必要性以及当今耦合模式的研究现状。
2025-04-22 19:54:01 622KB 自然科学 论文
1
为了探究城市扩展的规律,为城市的规划做出前瞻性的预测,将神经网络与元胞自动机相结合,从不同时相遥感数据中挖掘城市扩展土地利用演变的规律,自动找到土地利用元胞的转换规则,并以该规则反演和预测城市的扩展演变。应用该方法对义乌市的扩展作了实证分析和模拟预测,与同期义乌城市发展状况基本相吻合。 ### 基于神经网络与元胞自动机的城市扩展模拟 #### 一、研究背景与意义 随着全球化的加速和城市化进程的不断推进,城市土地利用的变化已成为一个重要的研究领域。城市扩展过程中涉及多种因素的影响,如经济发展水平、人口增长速度、政策导向等,这些因素共同作用导致了城市空间结构的演变。传统的研究方法往往难以准确捕捉到这些复杂因素之间的相互作用及其对城市扩展的影响。因此,探索一种能够有效模拟和预测城市扩展规律的方法显得尤为重要。 #### 二、元胞自动机(CA)与神经网络(ANN)结合的城市扩展模型 ##### 1. 元胞自动机理论基础 元胞自动机(Cellular Automata, CA)是一种用来模拟复杂系统的数学模型,它通过简单的局部规则来描述系统中各组成部分(即元胞)之间如何相互作用,进而推演出整体行为。CA模型主要由以下几个要素构成: - **元胞(Cell)**:构成系统的基本单位,例如土地利用类型。 - **元胞空间(Cell Space)**:所有元胞组成的集合。 - **状态(State)**:每个元胞可能处于的一种或多种状态之一。 - **邻域(Neighborhood)**:用于定义一个元胞周围与其相互作用的其他元胞集合。 - **规则(Rule)**:决定元胞状态转换的具体法则,是CA模型的核心。 ##### 2. 神经网络(Artificial Neural Network, ANN)的应用 人工神经网络是一种模仿人脑神经元结构的计算模型,通过大量的训练学习数据集中的模式和规律,具有较强的非线性拟合能力和自适应能力。在城市扩展模拟中,ANN可以通过学习历史遥感图像数据,自动识别出影响城市扩展的关键因素,并建立这些因素与城市土地利用变化之间的关联。 ##### 3. ANN-CA城市扩展模型 结合上述两种技术,ANN-CA模型首先利用神经网络从不同时相的遥感数据中挖掘城市扩展土地利用演变的规律,自动找到土地利用元胞的转换规则。接着,利用这些规则作为元胞自动机的转换规则,实现对未来城市扩展的模拟和预测。 #### 三、模型实施步骤 ##### 1. 数据准备 收集不同时间点的城市遥感图像数据,这些数据应覆盖城市扩展的不同阶段,以便于后续的模型训练和验证。 ##### 2. 特征提取 从遥感图像中提取与城市扩展相关的特征,如道路分布、建筑物密度、绿地比例等。 ##### 3. 神经网络训练 利用提取的特征训练神经网络模型,目的是让模型学会识别影响城市扩展的关键因素,并建立这些因素与土地利用变化之间的联系。 ##### 4. 规则挖掘 根据训练好的神经网络模型,自动挖掘出不同土地利用类型之间的转换规则。 ##### 5. 元胞自动机模拟 利用挖掘出的转换规则作为元胞自动机的规则,对城市未来的发展趋势进行模拟预测。 #### 四、案例分析——义乌市扩展模拟 ##### 1. 实证分析 该研究选择了浙江省义乌市作为案例,通过对该城市不同时期的遥感数据进行分析,建立了ANN-CA模型,并成功模拟了义乌市的土地利用变化过程。模拟结果与义乌市实际的城市发展情况基本相符。 ##### 2. 模型优化 通过对比分析模型预测结果与实际情况的差异,进一步调整模型参数,提高模型的预测精度。 #### 五、结论 本文提出了一种基于神经网络与元胞自动机相结合的城市扩展模拟方法。该方法不仅能够有效地挖掘城市扩展土地利用演变的规律,还能通过模拟预测帮助城市规划者做出前瞻性决策。通过对义乌市的实证分析表明,这种方法具有较高的预测准确性和实用性,对于指导城市规划和发展具有重要意义。
2025-04-22 12:42:07 1.7MB 自然科学 论文
1
内容概要:本文档提供了河北某单位的网络设备详细配置信息,旨在确保不同部门(如市场、人力和产品等部门)能够安全且高效地通信,并保障网络安全稳定。配置内容涉及多个方面:IP地址分配明确到具体的设备和接口,包括交换机、防火墙、路由器、无线控制器以及它们所使用的不同IP地址格式;规定了各设备间的链路连接规则、端口访问控制列表(ACLs)以及链路汇聚的参数;设置了复杂的动态主机配置协议(DHCP)来自动分配IPv4地址并管理无线网络连接的安全特性(例如WiFi认证机制)。同时配置了OSPF及其版本3在内的多种路由协议以确保网络间互联互通和数据转发;并且针对不同网络层次配置GRE over IPSec以保障特定数据传输通道的安全。此外,还设定了详细的SNMP监控与报警策略和一系列安全防护措施。 适用人群:适用于有一定网络基础知识的技术人员或者网络安全管理人员,尤其适用于那些负责构建或维护企业级局域网(LAN),广域网(WAN)的专业人士。 使用场景及目标:该文档可用于指导技术人员按照规范部署网络基础设施,确保各部门网络的有效隔离和通信质量,并提供详尽的操作步骤以便快速搭建一个具备高级别的安全保障的企业内部网络系统,同时也可以用来进行网络故障排查和日常运维工作的参考依据。 其他说明:本文档不仅涵盖了传统的IPv4网络规划,而且对IPv6的支持给予了充分考虑,这使得整个网络架构既兼容现有应用环境又能应对未来发展的需求。值得注意的是,文中多次提到对于不同类型业务流量的不同对待方法,例如带宽限制策略以及针对特定时段采取的访问管控政策等措施都是为了保证核心业务性能的前提下优化资源配置和保护网络安全。
2025-04-22 11:41:50 384KB 路由与交换 RIP OSPF DHCP
1
在当前全球能源危机和环境保护的大背景下,铁路作为重要的交通方式,其节能减排的重要性日益凸显。铁路运输具有运载量大、能源效率高、污染相对较低等优点,成为各大城市和国家解决交通问题、实现绿色交通战略的重要途径。在这一领域中,列车运行控制系统的优化扮演着至关重要的角色。本文将深入探讨2023年数维杯B题所提出的“基于目标速度约束的节能列车运行控制优化策略”,并结合算法实现和优化结果,探讨如何在保证安全的前提下,实现列车运行的高效率和低能耗。 我们需要明确列车运行控制的核心目标:即在确保旅客安全和舒适的前提下,最大程度地减少能源消耗,提高运输效率。在列车运行过程中,速度控制是影响能耗的关键因素之一。列车运行速度的高低直接影响到动能的大小,从而影响到牵引力和制动力的使用,最终反映在能耗上。因此,如何在不同的运行条件下合理地控制列车速度,成为一项技术挑战。 为了解决这一挑战,研究者们引入了“目标速度约束”的概念,这包括了列车在特定区段内必须遵守的最大和最小速度限制。这些限制既保障了运行的安全性,也考虑到线路条件、交通流量等多种因素。在此基础上,研究者们开发出多种优化算法,如动态规划、遗传算法、模拟退火等,用以寻找在满足这些约束条件下的最优速度控制方案。这些算法能够处理实时数据,如列车当前的位置、速度、前方的障碍物距离等,并据此生成适应当前环境的速度指令。 动态规划算法在处理有重叠子问题和最优子结构的问题时具有优势,通过记录子问题的解来避免重复计算,从而提高了计算效率。遗传算法则是借鉴生物进化论中的自然选择和遗传机制,通过迭代的方式逐步逼近最优解。模拟退火算法则模拟物理中固体物质的退火过程,通过逐步降低系统的“温度”来寻找系统的最低能量状态,即最优解。 接下来,我们将目光转向优化策略的“结果”部分。在实际应用中,这些策略的执行效果可以从多个维度进行量化评估。节能效果可以通过能耗降低的百分比来衡量,这是直接反应优化效果的指标。同时,安全性指标,如平均行驶时间、停站次数等,也是评估优化策略是否成功的重要依据。在一些情况下,还可以通过与传统控制策略进行对比分析,来更直观地展示新策略的优越性。 为了将这些研究成果转化为实际应用,优化策略需要被封装成实用的软件或插件工具。这样的工具不仅要具备强大的计算能力,还必须保证良好的实时性和稳定性,确保在铁路运营的复杂环境中能够可靠地执行。集成到列车运行控制系统中的软件模块将为列车司机或自动控制系统的决策提供科学依据,通过实施推荐的速度控制方案,实现节能与安全的双重目标。 最终,这一研究项目的核心是将数学建模与计算机科学相结合,解决实际的工程问题。通过科学的算法设计,不仅优化了列车的运行过程,还促进了轨道交通系统的智能化和绿色化发展。研究成果的应用对于提升我国轨道交通系统的能效和安全性具有重要的现实意义,有望成为推动铁路交通行业可持续发展的关键力量。随着研究的不断深入和技术的不断进步,我们有理由相信,未来的铁路交通将更加节能高效,为乘客提供更加安全、舒适和便捷的出行体验。
2025-04-22 10:02:28 798KB
1
2024年江西省电子专题赛仿真设计
2025-04-20 20:26:14 567KB
1
24年电赛A题-AC-AC变换电路并联运行(原理图+代码+仿真文件)Maltlab文件,输出幅度可调波形,详细见博客:https://blog.csdn.net/qq_62316532/article/details/140841537
2025-04-19 16:00:13 34KB
1
在IT领域,水准网条件平差是大地测量学中的一个重要概念,主要应用于地球表面的高程控制网络计算。这项技术涉及到精确测定地面点间的高程差异,并通过数学优化方法进行数据处理,以减小测量误差对结果的影响。MATLAB作为一种强大的数值计算和编程环境,被广泛用于实现各种科学计算任务,包括水准网条件平差的算法实现。 在"水准网条件平差MATLAB代码"中,我们可以预期找到的是一个用MATLAB编写的程序,该程序能够处理水准测量数据,进行条件平差计算。条件平差法是一种基于最小二乘原则的数学方法,它通过构建一组包含观测值、未知数和误差模型的条件方程,来求解最优化问题。在实际应用中,这种方法可以有效地解决因观测误差导致的不确定性问题。 Casellato等人在2014年的研究中提出了由多功能尖峰小脑网络驱动的自适应机器人控制,这是一种将生物学启发的神经网络模型应用到机器人控制领域的创新尝试。尖峰神经网络模仿了生物大脑中神经元的活动模式,能处理实时信息并适应不断变化的环境。在机器人控制中,这种网络可以提供更灵活、自适应的控制策略,使得机器人能够更好地应对复杂任务和不确定性。 在压缩包"167414-master"中,可能包含以下内容: 1. **源代码**:MATLAB代码文件,实现了水准网条件平差的算法,可能包括数据读取、条件方程构建、最小二乘求解等部分。 2. **数据集**:水准测量的观测数据,用于测试和验证算法的准确性。 3. **文档**:可能包含算法的详细说明、使用指南或研究论文的PDF版本,帮助用户理解代码的实现原理和应用方法。 4. **示例**:演示如何运行代码的实例,可能包括输入数据格式和期望输出的示例。 5. **库函数**:如果代码中使用到了MATLAB的特殊工具箱或外部库,这些可能作为单独的文件夹包含在内。 了解这些内容后,无论是IT专业人士还是学生,都可以通过这个MATLAB代码学习到水准网条件平差的实现细节,以及尖峰神经网络在自适应控制中的应用。这不仅可以提升对测量平差的理解,也有助于掌握如何将先进理论应用到实际工程问题中。
2025-04-18 08:45:44 358KB 系统开源
1