讨论了Hilbert变换的基本原理,以及基于Hilbert变换的包络解调方法在轴承故障诊断中的应用。实践表明:对于具有调制现象的滚动轴承故障诊断,基于Hilbert变换的包络解调方法,具有明显的诊断意义,是一种可靠的诊断方法。
2021-12-27 00:34:11 175KB 工程技术 论文
1
针对人为加工的滚动轴承点蚀故障数据难以模拟真实疲劳失效过程的问题,提出将滚动轴承强化寿命试验的轴承疲劳失效过程数据作为故障诊断数据,结合经验模态分解(Em-pirical Mode Decomposition,EMD)与共振解调技术对真实疲劳失效的滚动轴承进行故障诊断.依托经验模态分解的自适应性,有效的将携带故障信息的高频调制信号从原信号中分离出来,实现了信号的带通滤波;利用Hilbert变换进行解调分析得到包含故障特征信息的低频包络信号,经过频谱分析后实现对疲劳失效滚动轴承故障特征提取和故障辨识.实验结
2021-12-26 20:08:23 15.34MB 自然科学 论文
1
针对传统机器学习算法处理海量风机数据采集与监视控制(SCADA)监测数据效率低和准确度差的问题,提出利用极端梯度提升(XGBoost)算法预测风机主轴承故障。首先,对风机主轴承SCADA数据开展特征分析,挖掘和发现特征与故障之间的关联关系,并评估各特征的重要性;然后利用XGBoost算法构建主轴承故障预测模型,进行模型评估;最后,依据SCADA系统收集的实测数据对模型进行训练和测试,并调整XGBoost模型的主要参数,提高预测准确率。通过与经典梯度提升决策树(GBDT)算法诊断结果相对比,结果表明XGBoost在风机主轴承故障预测的效率和准确度方面均优于GBDT算法,是处理SCADA大规模数据集的有效工具。
1
针对滚动轴承故障信号具有非平稳、非高斯的特点,提出了将时域分析与小波分析相结合的方法对滚动轴承进行故障诊断。在研究不同信号分析方法理论的基础上,以滚动轴承外圈故障振动信号为例,采用多种信号处理方法进行了分析。结果表明,各种分析方法在分析轴承故障时的特点各不相同,在实际使用中,可将时域分析与小波分析综合使用,实现轴承状态的实时监测与故障的准确定位。
2021-12-21 09:45:09 294KB 故障诊断 轴承 时域分析 小波分析
1
基于小波和相关分析的滚动轴承故障诊断研究,李雅梅,陈明霞,滚动轴承是旋转机械设备中应用得最为广泛的一种通用机械部件。在研究小波变换消噪的原理以及循环自相关函数分析理论的基础上,对
2021-12-17 17:25:03 371KB 小波
1
滚动轴承是工业应用系统中的重要部件,其引发的故障是引起机器设备失效的重要原因。Hilbert变换基于滚动轴承故障引发的高频固有振动,提取包络信号。通过包络信号进行频谱分析从而提取滚动轴承的故障特征信息。通过采集内圈故障、外圈故障的滚动轴承振动信号,采用Hilbert变换对轴承的振动信号进行了分析,验证了Hilbert包络解调技术在滚动轴承故障诊断中的有效性。
2021-12-17 17:21:05 202KB Hilbert包络解调 滚动轴承 故障诊断
1
针对直接运用快速傅里叶变换(FFT)无法有效提取具有非线性非平稳特性的滚动轴承振动信号故障特征频率的问题,提出了一种基于经验模式分解和峭度指标的Hilbert包络解调方法。首先对滚动轴承的振动信号进行了经验模式分解(EMD),得到了包含轴承故障特征信息的各阶本征模态函数(IMF),再计算各阶IMF的峭度值,选取了峭度值较大的几阶IMF分量重构信号,并对重构信号进行了Hilbert包络解调分析,从而获得了滚动轴承的准确故障特征信息。分别对仿真模拟信号和实际滚动轴承发生内圈故障的振动信号进行了分析,清晰地得到
2021-12-17 17:17:38 689KB 工程技术 论文
1
峰峰值+均方差+峭度+波形因子+裕度因子
2021-12-15 17:10:28 13KB 西储大学 轴承 故障诊断
1