使用CNN和Word2vec进行文本分类
本文是参考gaussic大牛的“ text-classification-cnn-rnn”后,基于同样的数据集,嵌入词级别操作的CNN文本分类实验结果,gaussic大牛是基于字符级的;进行了第二版的更新:1。加入不同的卷积核; 2。加入正则化; 3。词唯一的中文或英文,删除掉文本中数字,符号等类型的词; 4。删除长度为1的词训练结果较第一版有所提升,验证集准确率从96.5%达到97.1%,测试准确率从96.7%达到97.2%。
本实验的主要目是为了探索基于Word2vec训练的词向量嵌入CNN后,对模型的影响,实验结果得到的模型在验证集达到97.1%
1