由 Ian T. Nabney 编写的流行机器学习库“NetLab”的附加组件。 库为 NetLab 实现卡尔曼滤波器训练算法。
2023-03-29 20:19:26 596KB matlab
1
在Matlab里面,描述的卡尔曼滤波。清楚的描述了卡尔曼滤波的表达试
2023-03-28 19:22:28 404B 卡尔曼滤波
1
黄小平 卡尔曼滤波原理及应用 书籍自带的matlab程序 全部章节
2023-03-26 22:03:38 19.06MB 卡尔曼 matlab
1
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:基于卡尔曼滤波的matlab图像滤波目标跟踪程序源码(源程序+图片+效果视频片段)_卡尔曼滤波_图像滤波_目标跟踪_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2023-03-26 21:07:33 823KB 卡尔曼滤波 matlab 图像滤波 目标跟踪
 利用加速度信号测量位移是油田抽油井光杆位移测量的主要方法,而加速度信号的随机噪声和趋势项是影响测量精度的主要因素,本文提出了一种基于学习的实时消噪和剔除趋势项方法。学习时先获取一段时间的加速度信号,再通过时间序列分析技术得出ARIMA模型及其参数,最后基于FFT变换的Rife-Jane频率估计方法求出加速度信号的周期;在线实时消噪和剔除趋势项方法是基于学习阶段所得模型参数,运用卡尔曼滤波技术消除加速度信号随机噪声;按周期两次积分得到光杆位移,用加窗递推最小二乘法在线消除趋势项。通过抽油机半实物仿真平台测试和分析加速度信号,结果表明,该方法有效地去除了加速度信号中的噪声和趋势项,极大地提高了位移的测量精度。
1
受定位分站和定位卡时钟同步误差、时钟计时误差、多径效应、非视距传播(NLOS)时延误差和电磁骚扰等影响,现有煤矿井下人员定位方法定位误差大,难以满足煤矿事故应急救援、运输和机电事故防治等需求。为提高定位精度,实现煤矿井下人员二维精确定位,提出了基于卡尔曼滤波的矿井人员二维精确定位方法:以定位分站测量到的定位卡到定位分站之间的距离作为卡尔曼滤波中的测量结果,根据建立的矿工在井下移动的数学模型推算出矿工的位置,并作为卡尔曼滤波中的预测结果,通过对测量结果和预测结果进行合理加权,根据上一步卡尔曼滤波后的最佳估计值得出当前时刻的最佳估计值,实现煤矿井下人员二维精确定位。
2023-03-26 18:36:16 634KB 行业研究
1
matlab建立汽车模型代码无味卡尔曼滤波器 写上去 优达学城课程,2017 年 10 月 自动驾驶汽车工程师纳米学位课程 “无味卡尔曼滤波器”项目,2018 年 3 月 克劳斯·H·拉斯穆森 使用 CTRV 运动模型在 C++ 中实现无迹卡尔曼滤波器。 两个自行车模拟数据集,数据集 1 和数据集 2(Ascii 文本文件),与 Term 2 Simulator 一起使用。 与扩展卡尔曼滤波器 (EKF) 一样,无迹卡尔曼滤波器 (UKF) 具有相同的三个步骤: 初始化 预言 更新 这些步骤编码在 ukf.cpp 文件中。 本项目使用了以下初始化参数: 初始状态协方差矩阵P_ = 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 过程噪声标准偏差纵向加速度,单位为 m/s^2 std_a_ = 5 过程噪声标准偏差偏航加速度 rad/s^2 std_yawdd_ = 0.4 通过将预测的 UKF 值与测试数据集提供的 Ground True 值进行比较,计算位置 X & Y 和速度 VX
2023-03-23 20:18:36 1.26MB 系统开源
1
MP4 文件,视频流为H.264压缩格式,用于测试人,车,等目标识别视频输入素材
2023-03-23 10:49:43 243.74MB 人工智能 目标跟踪 深度学习
1
该资料使用时间差分、背景差、自适应背景更新等方法进行运动目标跟踪
2023-03-22 15:10:36 1.99MB 运动目标 跟踪 自适应背景
1
传统MeanShift目标跟踪算法通过bin-bin颜色直方图表示目标特征,直方图中往往会混入背景颜色信息,造成跟踪不准确;同时由于MeanShift算法具有局部最优性,当目标受到严重遮挡丢失后,不能对目标重新定位跟踪。为了解决上述问题,在颜色直方图和抗遮挡能力方面进行了改进。利用交叉bin颜色直方图代替传统的bin-bin颜色直方图表示目标特征,减少背景颜色的干扰,提高MeanShift算法跟踪精度;当目标受到严重遮挡丢失后,通过一种尺度变化调整机制,在全局范围内搜索目标位置,提高MeanShift算法抗遮挡能力。实验显示,改进后的算法不仅在背景干扰大时对目标的跟踪精度更高,而且当目标受到严重遮挡丢失后,也能够对目标重新定位跟踪。
2023-03-21 01:25:57 681KB 论文研究
1