机器学习(变分贝叶斯、粒子滤波及边缘PF,内容包括大量课件、MATLAB代码)
2024-06-14 20:31:13 64.48MB matlab 变分贝叶斯 机器学习 粒子滤波
ouc机器学习实验,仅供参考
2024-06-14 16:44:22 7.8MB 机器学习
1
数字图像处理与机器视觉++Visual+C++与Matlab实现,原书的pdf版,不是代码,对应书籍的代码:http://download.csdn.net/detail/lvhongwei0627/5108355, 该书对于初学数字图像处理、机器视觉的朋友,帮助颇大,原书的pdf很难找,对应代码,注重实践!加油!空间里还有其他学习数字图像处理、机器视觉的好资料,欢迎学习、交流!
1
网络文本情感分析方法主要分为两大途径,无监督情感分析方法和有监督情感分析方法[2]。在2002年PANG等学者首次采用电影评论数据建立了使用机器学习的有监督情感分类方法。他分别使用了支持向量机(SVM)、朴素贝叶斯(NB)、最大熵(ME)分类器,二情感分类特征主要采用情感词频[3]。实验表明基于机器学习的有监督分类结果准确率要高于基于传统的无监督方法。文献[4]也提出了一种结合SVM和NB分类器的新模型(NBSVM),这种新的模型在多个数据集都取得了很好的分类效果。有监督网络评论情感分类方法是基于标注训练集语料来进行评论分类的,而标注的语料具有领域依赖性,因此有监督网络评论情感分类效果的好坏与文本领域有直接的关系。在一个领域标注的训练集训练的分类器很可能在另一个领域分类效果并不好。所以,有监督情感分类方法需要在不同领域标注大量不同的训练集,才能取得比较好的分类效果。但是,在众多领域都标注大量训练集是一项十分困难的事情,需要消耗大量的人力物力,已经成为有监督情感分类的瓶颈。
2024-06-13 23:05:47 9.49MB 网络 网络 机器学习 支持向量机
1
包含机器学习、数据挖掘、神经网络,可以应用于各个领域
2024-06-13 17:40:05 6.64MB 支持向量机 机器学习
1
factor-returns.csv
2024-06-11 20:10:32 96KB 机器学习
1
EE369 机器学习大作业
2024-06-10 15:07:13 50.86MB
1
人体CT扫描段层DCM格式,可用于机器学习/人工智能,练习参考。
2024-06-08 17:50:59 9.29MB 机器学习
1
机器学习数学基础(线性代数、概率与信息论、数值计算),机器学习常用方法、深度学习和具体应用
2024-06-07 20:12:13 29.44MB 机器学习
1
九点标定源程序,使用C#和Halcon编程。包含Halcon源程序和C#程序。适合学习机器视觉的朋友学习研究。
2024-06-06 12:14:19 8.57MB 机器视觉 Halcon
1