深度融合网络以完成图像 介绍 深度图像完成通常无法和谐地将还原的图像融合到现有内容中,尤其是在边界区域中。 而且它常常无法完成复杂的结构。 我们首先介绍Fusion Block,用于生成灵活的alpha成分图,以组合已知区域和未知区域。 它为结构和纹理信息搭建了桥梁,因此已知区域中的信息可以自然地传播到完成区域。 使用这项技术,完井结果将在完井区域边界附近平滑过渡。 此外,融合块的体系结构使我们能够应用多尺度约束。 多尺度约束在结构一致性上大大提高了DFNet的性能。 此外,易于将这种融合块和多尺度约束应用于其他现有的深度图像完成模型。 具有特征图和输入图像的融合块供稿将以与给定特征图相同的分辨率为您提供完成结果。 更多细节可以在我们的找到 融合块的插图: 相应图像的示例: 如果您发现此代码对您的研究有用,请引用: @inproceedings{Hong:2019:DFN:3
2022-04-15 21:35:07 3.16MB deep-learning pytorch image-inpainting inpainting
1
deep+learning.pdf.zip
2022-04-15 18:13:00 55.31MB learning 机器学习 深度学习
Deep Learning(深度学习)学习笔记整理.pdf.zip
2022-04-15 18:12:57 1.75MB 深度学习 学习 机器学习 人工智能
面部吸引力预测 这是使用地标特征和gabor过滤器预测面部吸引力的存储库。 从以下获得的功能: 面部距离 面部比例 伽柏滤波器 如何运行: 首先必须通过运行generate_features.py生成所有功能 然后,您可以通过运行train.py来训练自己的模型 您可以通过运行demo.py对单个图像进行测试(在开头给出路径) 所需的库:Dlib,OpenCV,numpy,scipy,sklearn,imutils 验证结果: 演示: 请参阅下载整个数据集。
2022-04-15 13:59:31 1.24MB python machine-learning scikit-learn regression
1
健身房 基于OpenAI Gym的多代理环境的集合。 安装 使用PyPI: pip install ma-gym 直接从来源: git clone https://github.com/koulanurag/ma-gym.git cd ma-gym pip install -e . 参考: 如果您想引用它,请使用此bibtex: @misc{magym, author = {Koul, Anurag}, title = {ma-gym: Collection of multi-agent environments based on OpenAI gym.}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublish
1
flask-demo 基于flask框架的使用神经网络模型识别过滤垃圾短信的Demo 快速起步 若提示缺少lib,pip install 对应的包即可 1.环境&技术 运行环境:Anaconda 后台框架:Flask 前端框架:Bootstrap 前端插件: 2.运行 python run.py 默认项目访问路径为 3.预览 感谢 感谢《Flask Web Development: Developing Web Applications with Python》一书,感谢提供了很棒的bootstrap-fileinput插件。 不足 对结果的展示不太好,无法和具体的垃圾短信一一对应,只用了g对象存储结果。
2022-04-14 22:35:07 78.11MB nlp flask natural-language-processing deep-learning
1
深度集群:方法和实施调查论文会议代码深度学习集群调查:从网络架构的角度来看IEEE ACCESS 2018深度集群:方法和实施调查报告会议代码A深度学习集群的调查:从网络的角度带有深度学习的体系结构IEEE ACCESS 2018聚类:分类和新方法Arxiv 2018 Theano预印纸方法会议代码可区分的具有集群大小约束的深度聚类-Arxiv 2019-N2D:(不是太)通过聚类自动编码的本地流形进行深度聚类嵌入。 N2D Arxiv 2019张量
2022-04-14 15:49:48 6KB Python Deep Learning
1
mlr3book:mlr3手册
2022-04-14 14:58:31 1.67MB machine-learning r book bookdown
1
《Neural Networks and Deep Learning》代码,从git上面偷来的,需要的自行下载,只改了第一个mnist_loder和network,其他的有时间再改
2022-04-14 14:00:40 18.09MB python 深度学习 《Neural Networks
1
DoWhy是一个Python库,可轻松估算因果关系。 DoWhy基于用于因果推理的统一语言,结合了因果图形模型和潜在结果框架。 为什么 使因果推理变得容易Amit Sharma,埃姆雷·基西曼(Emre Kiciman)阅读文档| 在线尝试! 博客文章:DoWhy简介| 使用Do-sampler由于计算系统越来越频繁地并更加积极地介入社会关键领域,例如医疗保健,教育和治理,因此正确预测和理解这些干预措施的因果关系至关重要。 没有A / B测试,基于模式识别和相关性的传统机器学习方法
2022-04-13 22:57:33 2.77MB Python Deep Learning
1