基于Python实现微信图片DAT格式解码为图片.rar
2025-01-01 23:57:24 9.28MB 微信 python
1
本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
1、文件“600519.csv”可以从网址 “http://quotes.money.163.com/service/chddata.html?code=0600519&start=20010827 &end=20221115&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOT URNOVER;VATURNOVER;TCAP;MCAP”下载 2、根据上面的网址,编写程序自动下载中证白酒指数中 17 支股票的数据(即下载 17 个 csv 文件),每支股票的数据应该是从上市起至 2022 年 11 月 29 日。 3、读取所下载的 17 个 csv 文件中有关股票的数据,将数据保存至一个 sqlite3 的数据 库中(sqlite3 的教程及接口示例可参见https://www.runoob.com/sqlite/sqlitetutorial.html)。 4、使用 DTW(Dynamic Time Warping)算法计算贵州茅台(600519)与其它 16 支股票的距离,并将这 16 个距离打印在屏幕上。
2024-12-17 16:14:44 22KB python 数据分析
1
Python语言可以用来编写桌面宠物程序。桌面宠物是一种可爱的虚拟宠物,可以定制外观,行为,反应,以及它们如何和用户互动。桌面宠物程序可以帮助用户在空闲时间里放松心情,改善情绪,节省时间,还能增加乐趣。 Python的强大功能可以帮助我们实现桌面宠物的功能,并且可以更容易地创建丰富的功能和复杂的交互。 首先,我们可以使用Python来实现宠物的外观和行为。Python提供了一系列的画图API,可以帮助我们创建宠物的外观,以及创建宠物的动画,以及定义宠物的行为。此外,Python还可以帮助我们实现宠物的声音,例如发出可爱的叫声,可以使用Python的内置库来实现。 其次,Python也可以帮助我们实现宠物和用户交互。我们可以使用Python中的GUI库,如Tkinter等,来实现图形用户界面,以便用户可以自由地与宠物交互,例如给宠物提供食物,给宠物玩耍,并且可以更改宠物的外观,行为等。 最后,Python还可以帮助我们编写定制的宠物程序,以满足特定用户的需求。例如,我们可以编写一个宠物程序,可以帮助用户改善他们的自我管理能力,可以帮助用户提高他们的注意力和专注力,或者可以帮助用户
2024-12-13 22:44:25 111KB python
1
Python实现BP神经网络
2024-12-12 17:19:38 3KB
1
python实现svm支持向量机算法代码,数据集随机生成
2024-11-26 15:26:52 1KB python 支持向量机
1
2024-02-20更新,使用方法,请参考:http://t.csdnimg.cn/FZs6E python实现m3u8的解析,提取所有的ts链接 下载所有的文件后,将m3u8保存到本地,使用ffmpeg转码为mp4
2024-11-25 14:33:23 11KB python ffmpeg
1
金豺优化算法(Golden Jackal Optimization Algorithm, GJO)是一种基于动物社会行为的全局优化算法,灵感来源于金豺群体在捕猎过程中的协同策略。在自然界中,金豺以其高效的合作方式来寻找和捕获猎物,这种智能行为启发了算法设计者。金豺优化算法在解决复杂多模态优化问题时表现出强大的性能,广泛应用于工程、数学、计算机科学等领域。 Python作为一门流行的编程语言,拥有丰富的库和工具,非常适合用于实现各种优化算法,包括金豺优化算法。Python的简洁语法和易读性使得代码易于理解和维护,这对于学习和应用GJO算法非常有利。 在Python中实现金豺优化算法,通常会包含以下几个关键步骤: 1. **初始化种群**:我们需要生成一组随机解,代表金豺群体的初始位置。这些解通常是在问题的可行域内随机分布的,每个解代表一个潜在的解决方案。 2. **计算适应度值**:根据目标函数,计算每只金豺的适应度值。适应度值越高的金豺代表其解的质量越好。 3. **确定领导金豺**:选取适应度值最高的金豺作为领导者,它将指导其他金豺进行搜索。 4. **社会互动**:模拟金豺间的协作和竞争。群体中的其他金豺会尝试接近领导者,但同时避免过于接近导致的资源冲突。这通常通过计算与领导者之间的距离和动态更新位置来实现。 5. **捕食行为**:金豺会根据捕食策略调整自己的位置,这通常涉及到对当前位置的微调和对领导者位置的追踪。 6. **更新种群**:在每次迭代后,更新金豺的位置,并依据一定的概率剔除低适应度的个体,引入新的随机解以保持种群多样性。 7. **迭代与终止条件**:算法持续运行,直到满足停止条件,如达到最大迭代次数或适应度值收敛到一定阈值。 在实际应用GJO算法时,需要注意以下几点: - **参数设置**:算法的性能很大程度上取决于参数的选择,例如种群大小、迭代次数、学习率等。需要通过实验和调整找到合适的参数组合。 - **适应度函数**:适应度函数应根据具体优化问题设计,反映目标函数的特性。 - **边界处理**:确保金豺的搜索范围限制在问题的可行域内,防止超出边界。 - **并行化**:利用Python的并行计算库如`multiprocessing`或`joblib`可以加速算法的执行。 了解并掌握金豺优化算法的Python实现,不仅可以提升优化问题求解的能力,也有助于理解其他生物启发式算法的工作原理。在实践中,可以结合其他优化技术,如遗传算法、粒子群优化等,实现更高效的优化策略。
2024-11-13 20:34:18 1.88MB python
1
内容概要:详细演示了使用 Python 中的 LSTM 和 XGBoost 结合来创建股票价格预测模型的方法。该示例介绍了从数据提取到模型优化全过程的操作,并最终通过图形比较预测值和真实值,展示模型的有效性,有助于提高金融投资决策水平和风险管理能力。本项目的亮点之一就是它融合 LSTM 捕获时间关系的强大能力和 XGBoost 在复杂特征之间的建模优势。 适用人群:有Python编程经验的人士以及金融市场投资者和技术分析师。 使用场景及目标:应用于金融市场的投资策略规划,特别是针对需要长期监控、短期交易决策的股票,用于辅助进行市场走势判断和交易决策支持。 额外信息:此外还包括对未来工作的改进建议:加入更多金融技术指标的考量以及使用更高级机器学习模型的可能性。
2024-10-23 13:27:07 41KB Python LSTM XGBoost 股票价格预测
1
在IT领域,动态规划是一种强大的算法,用于解决最优化问题,尤其在面对具有重叠子问题和最优子结构特征的问题时。在这个特定的项目中,我们关注的是如何使用Python编程语言来解决“武器目标分配问题”。这是一个典型的组合优化问题,其中涉及到在有限资源下将武器有效地分配给多个目标,以最大化某种效益或最小化损失。 动态规划的基本思想是将复杂问题分解为更小的子问题,然后逐个解决这些子问题,最终组合出原问题的解。这种策略的关键在于存储和重用子问题的解决方案,避免了重复计算,提高了效率。 在武器目标分配问题中,我们可以设定一个二维数组或者矩阵,其中行代表武器,列代表目标,每个元素表示使用某一武器打击某一目标的效益或成本。动态规划的过程通常包括以下几个步骤: 1. **定义状态**:确定状态变量,如在这个问题中,状态可能是已经分配的武器和目标的组合。 2. **状态转移方程**:建立状态之间的转移关系,即如何从一个状态过渡到另一个状态。这通常涉及到选择当前状态下最佳的决策。 3. **初始化边界条件**:设定起始状态的值,通常是问题的边界条件。 4. **填充值**:自底向上地填充状态表格,每一行或每一列代表一个武器或目标的决策过程。 5. **求解最优解**:通过回溯填充的表格,找到最优的武器与目标分配。 在Python中,我们可以使用二维列表或其他数据结构来实现这个表格,并利用循环结构进行填充。例如,可以使用两个嵌套的for循环遍历所有可能的武器目标组合,根据状态转移方程更新每个单元格的值。 此外,为了提高代码的可读性和复用性,可以封装这些步骤到一个函数中,可能还需要考虑如何处理特殊情况,如资源不足或目标被多个武器同时攻击的情况。 在提供的"Weapon-Target-Allocation-code"文件中,应该包含了具体的Python实现代码,你可以通过阅读和理解这段代码来深入学习这个问题的动态规划解决方案。这将帮助你掌握如何将理论知识应用于实际问题,并提升你的编程和算法设计能力。 动态规划算法在解决武器目标分配问题时,能够有效地找到最优解,其关键在于巧妙地构建状态和状态转移方程。通过Python实现,我们可以将复杂的数学模型转化为可执行的代码,这是计算机科学与工程领域中的一个重要技能。
2024-10-22 10:50:16 2.05MB python 动态规划
1