JD9165 屏规格书 支持TTL /MIPI 1024x600 Panel
2024-12-11 10:49:15 3.04MB
1
在IT行业中,编程语言是构建软件和应用的基础,而易语言作为一款中文编程语言,旨在降低编程门槛,让更多人能够理解和使用。本知识点主要聚焦于易语言中的RGB颜色与Alpha混合,这是一种在图形处理和界面设计中常见的技术,用于创建半透明效果。 我们要了解RGB颜色模型。RGB(Red, Green, Blue)是一种加色模型,通过红、绿、蓝三种基本颜色的不同组合,可以产生各种颜色。每种颜色的值范围通常为0到255,0表示没有该颜色,255则表示最大强度。通过调整这三种颜色的强度,我们可以得到从纯黑(0,0,0)到纯白(255,255,255)的任何颜色。 Alpha通道,通常用0到255的数值表示,代表颜色的透明度。0表示完全透明,255表示完全不透明。在RGB颜色基础上加入Alpha通道,可以实现颜色的混合和叠加,创造出半透明或遮罩效果。这种技术在图形用户界面(GUI)、图像处理和游戏开发等领域非常常见。 在易语言中实现RGB颜色Alpha混合,通常会涉及到调用操作系统提供的API函数。API(Application Programming Interface)是一系列预先定义的函数,允许开发者通过调用来实现特定功能。对于颜色混合,可能需要用到如Windows GDI(Graphics Device Interface)中的`ColorCombine`函数或者更底层的像素操作函数。 下面是一个简化的易语言源码示例,展示了如何进行RGB颜色Alpha混合: ```易语言 .整数型 .红, .绿, .蓝, .透明度, .混合红, .混合绿, .混合蓝 .红 = 255 ; 原始红色值 .绿 = 128 ; 原始绿色值 .蓝 = 0 ; 原始蓝色值 .透明度 = 127 ; Alpha值 ; 调用API函数进行颜色混合 .混合红, .混合绿, .混合蓝 = 调用("ColorCombine", .红, .绿, .蓝, .透明度, 0, 0, 255) ; 输出混合后的RGB颜色 打印("混合后的颜色: RGB(", .混合红, ",", .混合绿, ",", .混合蓝, ")") ``` 在这个例子中,我们首先定义了原始RGB颜色和Alpha值,然后调用了一个假设存在的`ColorCombine` API函数,这个函数会根据给定的参数进行颜色混合,并将结果保存在`.混合红`, `.混合绿`, `.混合蓝`中。我们输出混合后的RGB颜色值。 实际的易语言程序中,你需要查找并正确使用相应的API函数,确保传入正确的参数。这可能需要对Windows API有一定的了解,以及查阅相关的易语言库或函数文档。 易语言通过调用API函数和自定义算法,能够实现RGB颜色与Alpha通道的混合,这对于创建具有复杂视觉效果的应用程序至关重要。理解并掌握这一技术,有助于提升你在图形界面设计和图像处理方面的编程能力。
2024-11-28 15:31:54 425KB
1
MIPI D-PHY(Mobile Industry Processor Interface - Digital Physical Layer)是一种接口规范,由MIPI联盟制定,用于在移动设备和嵌入式系统中连接处理器、传感器、显示屏等组件。D-PHY是MIPI联盟物理层标准的一个部分,专注于高速、低功耗的数据传输。 版本2.5是该规范的最新迭代,它包含了对早期版本的改进和优化,以适应不断发展的移动设备技术需求。以下是MIPI D-PHY specification V2.5的一些关键知识点: 1. **物理层设计**:D-PHY设计为低功耗,具有多个速度等级,能够支持从慢速模式到高速模式的切换,以适应不同应用场景。它采用了差分信号传输,提供更好的噪声免疫和更小的电磁干扰。 2. ** Lane 结构**:D-PHY使用多通道(lane)架构,每个lane可以独立发送和接收数据。这提高了数据传输速率和系统的灵活性。常见的配置包括单lane、双lane和四lane。 3. **信号模式**:D-PHY支持多种信号模式,如LP(Low Power)模式,用于低功耗状态;HS(High Speed)模式,用于高速数据传输;以及CS(Clock State)模式,提供时钟信号。 4. **状态机模型**:D-PHY的状态机模型包括几种不同的状态,如休眠(Sleep)、待机(Idle)、预充电(Pre-Charge)、初始化(Initialization)、数据传输(Data Transfer)等,这些状态转换旨在优化能效和数据传输效率。 5. **突发传输(Burst Transfer)**:D-PHY支持突发传输,允许连续的多位数据包在一次HS状态下传输,减少了 lane 间的开关操作,从而提高整体传输效率。 6. **错误检测与恢复机制**:D-PHY包含错误检测和恢复机制,如ECC(Error Correction Code)和CRC(Cyclic Redundancy Check),以确保数据的完整性和可靠性。 7. **电源管理**:D-PHY规范考虑了电源管理,允许设备在不使用时进入低功耗状态,同时快速恢复到工作状态,以满足移动设备的电池寿命要求。 8. **兼容性**:MIPI D-PHY V2.5与其他MIPI接口(如CSI-2(Camera Serial Interface 2)和DSI(Display Serial Interface))兼容,使得不同组件之间可以无缝集成。 9. **版本更新**:V2.5版本可能包含了一些新的技术改进,比如增强的错误处理、更高的数据速率支持、更优化的功耗控制等,这些改进是基于之前版本的反馈和行业发展趋势进行的。 10. **知识产权(IPR)保护**:MIPI D-PHY规范受版权保护,使用此规范需要遵循MIPI联盟的规定,并可能需要获得相应的授权。 MIPI D-PHY specification V2.5是一个先进的接口标准,旨在为移动设备提供高效、可靠且低功耗的数据传输解决方案。它不断演进以满足不断提升的性能需求和市场变化。
2024-11-11 20:10:57 2.63MB MIPI
1
Lontium LT8912 MIPI?DSI至LVDS和HDMI/MHL网桥采用单通道MIPI?D-PHY接收器前端配置,每个通道4个数据通道,每个数据通道以1.5Gbps的速度运行,最大输入带宽为6Gbps。 对于屏幕应用,网桥解码MIPI?DSI 18bpp RGB666和24bpp RGB888数据包,并将格式化的视频数据流转换为兼容的LVDS输出,该输出在25MHz到154MHz的像素时钟下工作,提供单链路LVDS,每个链路有4个数据通道。 对于电视应用,桥接器提供HDMI/MHL数据输出,可选S/PDIF或2通道I2S串行音频输入。它的高保真2通道I2S可以传输高达192kHz的立体声采样率。S/PDIF可携带立体声LPCM音频或压缩音频,包括Dolby?Digital和DTS?。 LT8912采用先进的CMOS工艺制造,在0.5mm间距封装的12mm x 12mm LQFP和0.4mm间距封装的7.5mm x 7.5mm QFN中实现。这些包装符合RoHS,并规定在?40°C至+85°C的温度下工作。
2024-11-04 09:52:10 1.24MB MIPI 数码摄像机 数据手册
1
JD9165 1024X600 7 inch MIPI屏CMD 模式数据
2024-10-11 09:16:42 3KB
1
基于FPGA的车牌识别,其中包括常规FPGA图像处理算法: rgb转yuv, sobel边缘检测, 腐蚀膨胀, 特征值提取与卷积模板匹配。 有bit流可以直接烧录实验。 保证无错误,完好,2018.3vivado版本,正点达芬奇Pro100t,板卡也可以自己更改移植一下。 所以建的IP都有截图记录下来。
2024-10-09 22:12:09 1.16MB 图像处理 fpga开发
1
用于检测机载RGB,高光谱和LIDAR点云中单个树的多传感器基准数据集 树木的个体检测是林业和生态学的中心任务。 很少有论文分析在广泛的地理区域内提出的方法。 NeonTreeEvaluation数据集是在国家生态观测网络(NEON)中22个站点的RGB图像上绘制的一组边界框。 每个站点覆盖不同的森林类型(例如 )。 该数据集是第一个在多种生态系统中具有一致注解的数据集,用于共同注册的RGB,LiDAR和高光谱图像。 评估图像包含在此仓库中的/ evaluation文件夹下。 注释文件(.xml)包含在此仓库中的/ annotations /下 制作人:Ben Weinstein-佛罗里达大学。 如何根据基准进行评估? 我们构建了一个R包,以方便评估并与基准评估数据进行交互。 图像是如何注释的? 每个可见的树都进行了注释,以创建一个包围垂直对象所有部分的边界框。 倒下的树木没有注释。
2024-10-09 21:49:48 2GB Python
1
This document specifies MIPI A-PHY, a serial interface technology 1 with high bandwidth capabilities developed particularly for long reach (e.g., automotive) applications, enabling low pin count and a high level of power efficiency. A-PHY is designed for a wide range of long reach applications, and specifically for automotive market, to carry multiple protocols from MIPI Alliance such as CSI-2 for cameras, and DSI and DSI-2 for displays. ### MIPI A-PHY V1.1:面向长距离应用的高速串行接口技术 #### 概述 MIPI A-PHY(以下简称“A-PHY”)是MIPI联盟开发的一种高性能、高带宽的串行接口技术标准。该标准特别针对长距离传输应用设计,例如在汽车领域中实现高效的数据传输。A-PHY旨在通过减少引脚数量并提高能效来支持这些应用。 #### 技术特点与应用场景 A-PHY的主要特点包括: 1. **高带宽能力**:支持高速数据传输,满足高清视频等大数据量应用的需求。 2. **低引脚计数**:通过优化设计,减少了所需的物理连接器数量,简化了系统设计并降低了成本。 3. **高能效**:在保持高性能的同时,实现了较低的功耗,这对于电池供电设备尤为重要。 4. **广泛的应用范围**:不仅限于汽车市场,还可以应用于其他需要长距离、高速数据传输的场景。 A-PHY的应用场景主要包括但不限于: - **汽车领域**:用于车载摄像头(通过MIPI CSI-2协议)、显示屏(通过DSI和DSI-2协议)的数据传输。 - **工业应用**:如监控系统中的远程摄像头数据传输。 - **消费电子**:如智能家居中的长距离传感器网络。 #### 标准发展历程 根据提供的部分内容显示,A-PHY版本1.1是在2021年8月9日发布的,并于同年12月8日被MIPI董事会采纳。此版本是在先前版本的基础上进行改进和完善的结果,预期后续还会进一步的技术更新和发展。 #### 技术规范要点 - **版本信息**:A-PHY V1.1是在2021年8月9日发布,2021年12月8日被MIPI董事会采纳。 - **版权与免责声明**:文档明确指出其版权归属MIPI联盟所有,并且强调了材料提供的是“原样”状态,不包含任何形式的保证。同时,也对任何可能的责任进行了限制。 - **技术细节**:虽然文档的部分内容未完全给出,但可以推断其中会详细描述A-PHY的技术规格,包括但不限于信号传输方式、数据编码方案、电源管理策略等方面的内容。 #### 技术细节分析 1. **信号传输**:A-PHY采用高速串行接口技术,能够有效减少信号干扰和衰减,确保在长距离传输时仍能保持高质量的数据传输。 2. **数据编码与解码**:为了提高传输效率,A-PHY可能会采用先进的数据压缩技术和错误校验机制,确保数据完整性和准确性。 3. **电源管理**:考虑到能耗问题,A-PHY的设计中包含了智能电源管理功能,能够在保证性能的同时降低功耗。 4. **兼容性与扩展性**:A-PHY支持多种协议,如CSI-2、DSI等,这为系统的集成提供了便利。此外,它的设计还考虑到了未来技术的发展,具有良好的扩展性。 #### 结论 MIPI A-PHY V1.1是一种专为长距离、高速数据传输设计的先进接口技术。它不仅满足了当前市场的迫切需求,也为未来的技术进步奠定了坚实的基础。随着技术的不断演进,A-PHY有望在更多领域得到广泛应用,推动整个行业的技术创新与发展。
2024-09-12 14:50:58 4.16MB mipi 高速串行
1
MIPI D-PHY协议是移动行业接口联盟(MIPI Alliance)制定的一种高速物理层(PHY)接口标准,广泛应用于移动设备、相机模组、显示模块等领域的数据传输。D-PHY版本1.2是在2014年发布的一个更新版本,它在前一版本的基础上进行了编辑和技术上的改进。 D-PHY协议的核心目标是提供一种低功耗、高性能的串行接口,以支持高速数据传输。协议主要包括以下几个关键组成部分: 1. ** Lane Configuration**:D-PHY协议支持单 lane、双 lane 和四 lane 的配置,可以根据应用需求调整带宽和功耗。Lane是数据传输的通道,多lane可以增加数据传输速率。 2. **电压移位键控(VSK)**:这是D-PHY的数据传输机制,通过改变信号线上的电压水平来编码数据,分为高电平(HS)和低电平(LS)两种状态,以实现高速传输。 3. **状态机模型**:D-PHY协议定义了四种主要的状态,包括休眠(Sleep)、低速(Low Speed)、预充电(Pre-Charge)和高速(High Speed)。这些状态转换有效地管理了能量消耗,并确保了数据传输的可靠性。 4. **Calibration**:校准是D-PHY中的一个重要环节,用于调整接收器和发射器之间的同步,以确保数据准确无误地传输。校准过程包括时钟恢复、眼图分析、均衡器设置等步骤,确保信号质量。 5. **Lane Level Equalization**:D-PHY支持在lane级别进行均衡,以补偿信号在传输过程中可能遇到的衰减和干扰,保证数据的完整性。 6. **Error Correction and Detection**:协议包含错误检测和纠正机制,如CRC(循环冗余检查)和包头尾部的奇偶校验,以检测并纠正传输中的错误。 7. **电源管理**:D-PHY协议还考虑了电源管理,允许设备在不传输数据时进入低功耗模式,以节省能源。 8. **兼容性与扩展性**:D-PHY协议设计时考虑了与其他MIPI接口标准(如C-PHY、CSI-2、DSI等)的兼容性和未来技术的扩展性。 9. **知识产权(IPR)声明**:MIPI Alliance对D-PHY协议拥有版权,使用该协议的材料需要获得其授权,且不提供任何明示或暗示的保修,包括但不限于适销性、特定用途适用性、非侵权性等。 MIPI D-PHY协议1.2版本是一个经过优化的高速接口标准,旨在为移动设备提供高效、可靠的物理层数据传输,同时兼顾了低功耗和易扩展性的需求。通过严格的校准和管理机制,确保了数据传输的精确性和稳定性。
2024-08-31 16:29:55 2.4MB 标准协议
1
MIPI A-PHY V1.1.1协议是MIPI Alliance发布的一种物理层(PHY)接口规范,旨在为移动和物联网设备提供高速、低功耗的串行链路连接。A-PHY是MIPI Alliance针对长距离、高带宽通信需求而设计的一种高级PHY层协议,适用于摄像头、显示器、传感器等组件与主处理器之间的通信。 MIPI A-PHY的核心特点包括: 1. **长距离传输能力**:A-PHY设计考虑了在汽车、工业和其他应用场景中的长电缆或无线传输,能够处理超过一米的距离,甚至更远,而保持数据的完整性和稳定性。 2. **高性能**:该协议支持高数据速率,满足高清视频、图像处理和大数据传输的需求。它能够提供多种速率配置,以适应不同应用的性能要求。 3. **低功耗**:A-PHY采用了节能技术,如自适应调制编码(AMC)、睡眠模式和功率管理机制,以减少不必要的能量消耗,适应电池供电设备的需求。 4. **错误检测和恢复**:协议内包含了错误检测和纠正机制,确保数据的可靠性,即使在有噪声的环境中也能保证通信质量。 5. **灵活性**:A-PHY可以与MIPI Alliance的其他接口标准(如DSI和CSI)兼容,允许灵活的设计选择,并且支持未来的技术演进。 6. **版本更新**:v1.1.1版本是在v1.1的基础上进行了进一步的技术完善和优化,可能包括错误修复、性能提升和功能增强。 7. **知识产权保护**:文档声明为MIPI Alliance的版权,只对会员公司开放,且明确规定了实施者的权利和义务,以及关于免责声明的信息,强调了材料的“AS IS”性质,即不提供任何形式的明示或暗示保证。 A-PHY协议的实现通常涉及以下组件: - 发送器(Transmitter):将数据转换为适合长距离传输的信号。 - 接收器(Receiver):接收信号并恢复原始数据,同时进行错误检测和纠正。 - 控制器(Controller):管理和协调发送器和接收器的活动,处理协议层的事务。 - 电缆或无线介质:用于实际的数据传输。 在实际应用中,MIPI A-PHY V1.1.1协议的实施者需要注意与MIPI Membership Agreement和MIPI Bylaws一致,以遵循联盟的规定,并且要理解并应对文档中提到的预期技术变化,以保持解决方案的最新状态。同时,由于免责声明的存在,开发者需要自行承担使用此规格可能带来的风险和损失。
2024-08-30 10:35:31 4.17MB MIPI
1