高光谱图像小目标检测的一篇英文文献,耿修瑞和赵永超发表的。阐述了小目标检测的原理
2023-05-17 17:22:25 1.38MB target detection
1
高光谱分解 卷积神经网络的高光谱图像分解(无分叉,半成品) 说明 先决条件 Python 3.8 TensorFlow 2.3.0 建议使用conda创建虚拟环境并使用以下命令安装依赖项: pip install -r requirements.txt 用法 在设置参数后,在终端中输入以下命令: python run.py 更多细节: 使用python run.py -h获取更多参数设置详细信息。 数据集 我们提供了两个处理后的数据集:数据集中的Jasper Ridge(jasper),Urban(urban)/ data.npy:高光谱数据文件。 data_gt.npy:基本事实文件。 data_m.npy:端成员文件。 更新:2021年2月10日
2023-02-28 16:03:11 21.01MB hyperspectral-image hyperspectral-unmixing Python
1
hsdar软件包包含用于管理,分析和模拟高光谱数据的类和函数。 这些可能是通过rgdal界面进行的光谱仪测量或高光谱图像。
2023-02-24 06:49:39 3.73MB 开源软件
1
这是论文《Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9), 3312-3324》的代码,更多详情可在纸上找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.20。 libsvm-3.20可从https://www.csie.ntu.edu.tw/~cjlin/libsvm/获得
2022-11-30 20:39:24 11.4MB matlab
1
这是论文“Density Peak Clustering-based Noisy Label Detection for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2018, (Accepted)”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-30 10:29:35 9KB matlab
1
这是论文“PCA based Edge-preserving Features for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12), 7140-7151.”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-19 19:43:23 5.73MB matlab
1
高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验,以验证所提出的基于LRMR的HSI恢复方法的性能。
2022-07-23 22:34:24 1.5MB Go Decomposition (GoDec); hyperspectral
1
idw算法matlab代码基于正则化子空间方法和协同表示的高光谱影像异常检测 这是用于高光谱异常检测的 matlab 代码(LSAD-CR-IDW 和 LSUNRSORAD 算法) 有关该项目的更多信息,请参阅我们的论文: 【共同第一作者】 先决条件: matlab R2018b 其他相关论文: [1]tanh坤,苏增福侯,Dongelei马云,虞陈,钱渡。 [J]. 遥感, 2019, 11(13): 1578. [共同第一作者] [2]侯苏增福,李炜,Lianru高,张冰,马Pengge和君临太阳。 (2020) [口头] [3]侯苏增福,李炜,陶然,Pengge马和石蔚华。 [J]. 中国科学信息科学。 2020。 [4] 刘军,侯增福,李伟,冉涛,达尼洛·奥兰多,李洪斌。 [J]. IEEE 神经网络和学习系统汇刊,doi:10.1109/TNNLS.2021.3071026。 [第二作者] 我的个人网站: 1.Github网站: 2.CSDN中文博客: 接触: 电子邮件:
2022-06-21 16:00:56 15.83MB 系统开源
1
spec-img-finesse 在他们的工作Makantasis等。 (2015年)表明,使用CNN,高光谱图像可以成功分类。 CNN可以对像素的光谱和空间特征进行编码。 特征的从低到高层次结构极大地提高了分类性能。 在我们的CNN实施中,我们使用层修剪和层压缩方法扩展和优化了它们的方法。 每个植物在电磁频谱上都有其独特的频谱“特征”,可以使用高光谱传感器捕获该特征。 将图像中的高光谱带作为特征,将每个像素作为样本,利用卷积神经网络(CNN)和支持向量机(SVM)对植物进行分类。 CNN优化有助于防止过拟合,加速推理并减少其在内存,电池和计算能力方面的资源。 Keras 2.1.5与Tensorflow 1.7.0结合使用。 使用了印度松树数据集。 使用支持多项式的SVM可以达到83.9%的测试精度,而使用CNN可以达到99.2%的测试精度。 可以在项目报告“使用高光谱图像进行植
1