hsi matlab代码该存储库包含在以下方面提出的高光谱图像降噪算法: Dantas CF,Cohen JE和Gribonval R.“使用字典学习进行高光谱图像降噪”。 WHISPERS 2019,荷兰阿姆斯特丹。 (位于:) 所提出的技术结合了低等级和稀疏性(通过词典学习)。 用法示例 要运行的主要脚本是“ DL_HSI_denoise.m”。 假设将图像放置在matlab变量“ imnoise”(3D数组)中,然后运行以下代码: [imout,exec_times] = DL_HSI_denoise(imnoise); 其中“ imout”包含最终去噪图像,“ exec_times”包含执行时间。 文件列表和描述 DL_HSI_denoise.m:主脚本。 输入嘈杂的HSI并输出其去噪版本。 脚本层次结构:DL_HSI_denoise.m-> image_denoise_lr.m-> HO_SuKro_DL_ALS.m-> DictUpdateALS2.m 核/ image_denoise_lr.m:去噪方法的稀疏阶段(使用字典学习)。 HO_SuKro_DL_ALS.m:默认
2022-05-23 15:02:55 47KB 系统开源
1
图卷积网络用于高光谱图像分类 , ,,,, 该工具箱中的代码实现了 。 更具体地,其详细如下。 引文 如果此代码对您的研究有用且有帮助,请引用论文。 D. Hong,L。Gao,J。Yao,B。Zhang,A。Plaza,J。Chanussot。 用于高光谱图像分类的图卷积网络,IEEE Trans。 Geosci。 遥感,2020,DOI:10.1109 / TGRS.2020.3015157。 @article{hong2020graph, title = {Graph Convolutional Networks for Hyperspectral Image Classification}, author = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanusso
2022-05-10 20:53:01 41.38MB Python
1
高光谱图像(HSI)通常在采集过程中由于各种噪声的混合而降低质量,这些噪声可能包括高斯噪声,脉冲噪声,虚线,条纹等。 本文介绍了一种基于低秩矩阵恢复(LRMR)的HSI恢复新方法,该方法可以同时去除高斯噪声,脉冲噪声,死线和条纹。 通过按字典顺序将HSI的补丁排序为二维矩阵,可以探索高光谱图像的低秩属性,这表明干净的HSI补丁可以视为低秩矩阵。 然后,我们将HSI恢复问题公式化为LRMR框架。 为了进一步消除混合噪声,应用了“分解”算法来解决LRMR问题。 在模拟和真实数据条件下都进行了一些实验,以验证所提出的基于LRMR的HSI恢复方法的性能。
2022-04-09 16:55:22 4.96MB Go Decomposition (GoDec); hyperspectral
1
数据融合_HSI_LiDAR 基于深度学习的HSI和LiDAR图像融合 作者 平台 Ubuntu 14.04 CUDA 8.0 GTX 850M 张量流1.4 python2 / python3 使用卷积神经网络的体系结构 输入-[转换-关联-最大池] x 2-[仿射-关联] x 2-仿射-softmax 档案文件 ./HSI/Load_data.py加载HSI源数据并制作Train / Test文件作为补丁 ./HSI/CNN.py定义CNN参数./HSI/CNN_feed.py训练HSI CNN权重./HSI/run_cnn.py使用预先训练的CNN参数进行HSI分类./HSI/Spatial_dataset.py为处理HSI数据。 ./HSI/Get_feature.py保存最后汇聚层平功能./DSM几乎一样./HSI 结果 接触
1
hsi matlab代码通过3D全卷积神经网络的高光谱图像空间超分辨率 通过,袁鑫,,, 介绍 3D-FRCNN是具有单个网络的高光谱图像超分辨率(SR)的统一框架。 您可以使用该代码为hsi超分辨率(SR)训练/评估网络。 有关更多详细信息,请参阅我们的。 拟议框架 一些SR结果 引用我们的工作 @Article{rs9111139, AUTHOR = {Mei, Shaohui and Yuan, Xin and Ji, Jingyu and Zhang, Yifan and Wan, Shuai and Du, Qian}, TITLE = {Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network}, JOURNAL = {Remote Sensing}, VOLUME = {9}, YEAR = {2017}, NUMBER = {11}, ARTICLE NUMBER = {1139}, URL = {http://www.mdpi.com/2072-4292/
2022-03-27 16:07:07 5.19MB 系统开源
1
此代码计算对高光谱图像降维必不可少的最佳波段数。 该作品已作为计算机和信息科学通信 (CCIS) 的一部分出版,Springer,丛书第 1035 卷链接: https : //link.springer.com/chapter/10.1007/978-981-13-9181-1_26 引文:Gupta V.、Gupta SK、Shukla DP (2019) 使用光谱聚类为高光谱图像优化波段。 在:Santosh K., Hegadi R. (eds) 图像处理和模式识别的最新趋势。 RTIP2R 2018。计算机和信息科学通信,第 1035 卷。Springer,新加坡。 DOI: https : //doi.org/10.1007/978-981-13-9181-1_26
2022-03-16 22:24:03 10.68MB matlab
1
作为一种强大而有前途的统计信号建模技术,稀疏表示已广泛应用于各种图像处理和分析领域。 对于高光谱图像分类,以前的研究已经表明了基于稀疏性的分类方法的有效性。 本文提出了一种非局部加权联合稀疏表示分类方法(NLW-JSRC),以提高高光谱图像分类的效果。 在联合稀疏模型​​(JSM)中,对中央测试像素周围的不同相邻像素使用不同的权重。 一个特定的相邻像素的权重由相邻像素和中央测试像素之间的结构相似性确定,这被称为非局部加权方案。 本文采用同时正交匹配追踪技术求解非局部加权联合稀疏模型​​(NLW-JSM)。 在三个高光谱图像上测试了所提出的分类算法。 实验结果表明,该算法的性能优于其他基于稀疏性的算法和经典的支持向量机高光谱分类器。
2022-03-14 10:18:26 384KB Classification; hyperspectral imagery; joint
1
提出了一种基于EMAPs和SMLR的高光谱图像分类方法。 首先,我们采用EMAPs(扩展形态学多属性谱)算法有效地提取了HSI的空间信息,并结合光谱信息形成了空间光谱特征融合模型。 EMAP可以用多个属性结构替换简单的结构元素,并对其进行级联以获得多个结构的属性特征。 然后,我们利用SMLR(稀疏多项式逻辑回归)进行HSI分类。 SMLR适用于高维和大数据集。 采用基于MLR的多分类器,并采用快速算法学习稀疏的多分类器。 与HSI实验中的其他方法相比,我们的方法提供了出色的结果。
2022-03-08 15:10:26 505KB hyperspectral image; classification; EMAPs;
1