项目开发和源代码已移至 打破数据传输瓶颈 UDT是一种可靠的基于UDP的应用程序级别数据传输协议,用于广域高速网络上的分布式数据密集型应用程序。 UDT使用UDP通过其自己的可靠性控制和拥塞控制机制来传输批量数据。 新协议可以以比TCP更高的速度传输数据。 UDT还是一个高度可配置的框架,可以容纳各种拥塞控制算法。 演示文稿: 海报: TCP协议 TCP很。 UDT。 UDT UDT由伊利诺伊大学和Google的等人开发。 在下可以使用UDT C ++实现 主要特征 快。 UDT是为超高速网络设计的,已用于支持TB级数据集的全局数据传输。 UDT是许多商用WAN加速产品中的核心技术。 公正友善。 并发的UDT流可以公平地共享可用带宽,而UDT也为TCP留有足够的带宽。 易于使用。 UDT完全位于应用程序级别。 用户只需下载该软件即可开始使用。 无需内核重新配置。 此外,UDT
2026-02-06 09:30:45 2KB
1
基于客户端+服务器的UDP组合文件传输应用程序。 基于UDT协议-通过libudt-http://udt.sourceforge.net/ UDT是一种可靠的基于UDP的应用程序级数据传输协议。 UDT是为超高速网络设计的,已用于支持TB级数据集的全局数据传输。 Ne Plus Ultra的构建具有极低的依赖性(静态链接到libudt.a),以确保最大的可移植性和易用性。 https://github.com/bcwinters/neplusultra
2026-02-05 08:40:52 369KB 开源软件
1
在Unity引擎中开发网络应用时,常常需要处理客户端与服务器之间的通信。本教程将深入探讨如何在Unity中封装一个基于UDP的异步通信服务端。UDP(User Datagram Protocol)是一种无连接的、不可靠的传输协议,适用于实时游戏或对延迟敏感的应用,因为它提供了较低的延迟和较高的数据传输速率。 我们来看`ServerSocket.cs`,这是服务端的核心类,负责创建和管理UDP套接字。在C#中,我们可以使用`System.Net.Sockets.UdpClient`来实现UDP通信。这个类包含了发送和接收数据的方法,如`SendAsync`用于异步发送数据,`ReceiveAsync`用于异步接收数据。服务端通常会启动一个监听线程,不断等待并处理来自客户端的数据包。 接着,`BaseData.cs`是所有消息基类,定义了消息的基本结构,比如可能包含消息类型、序列号、数据长度等字段。这样设计便于服务端解析接收到的数据,并根据消息类型执行相应的业务逻辑。 `Client.cs`代表客户端类,它包含了连接到服务器、发送数据和接收数据的逻辑。客户端也需要一个类似的异步接收机制来处理来自服务器的响应。使用`UdpClient.Connect`方法可以设置目标服务器的IP地址和端口号,然后通过`SendAsync`发送数据,使用`ReceiveAsync`接收。 `PlayerMsg.cs`和`QuitMsg.cs`是具体的消息类,分别表示玩家状态消息和退出游戏消息。这些类通常会继承自`BaseData`,并添加特定的消息内容,例如玩家ID、位置信息等。 `PlayerData.cs`可能是用来存储和管理玩家数据的类,它可能包含了玩家的各种属性,如角色名、等级、坐标等。当玩家状态改变时,这些信息可以通过`PlayerMsg`发送给服务器。 `BaseMsg.cs`是消息接口或基类,定义了消息的通用行为,比如序列化和反序列化。Unity支持多种序列化方式,如JSON、BinaryFormatter或自定义的序列化方法。消息序列化是将对象转换为可发送的字节流,而反序列化则是将接收到的字节流还原为对象。 `Program.cs`通常是服务端的主程序入口,它负责初始化`ServerSocket`,启动监听线程,并处理程序生命周期中的其他任务,如异常处理和资源清理。 在实际开发中,还需要考虑到错误处理、网络断开重连、多线程安全、消息验证和加密等复杂问题。此外,为了优化性能,可能还需要实现数据压缩、消息分包和重组等策略。 Unity-UDP异步通信服务端封装涉及到网络编程、对象序列化、多线程和并发控制等多个技术点。通过理解并实现这样的系统,开发者可以构建出高效、可靠的网络应用程序,满足游戏和其他实时应用的需求。
2026-01-14 16:25:33 6KB unity 网络 网络 网络协议
1
从多个udp组播接收大量视频灌包数据,通过回调函数实现,由回调函数参数获取数据内容和udp地址编号,在大量数据时可实现数据的稳定接收,一般不会丢失数据,当前支持2个udp组播地址。 用QT工具开发,测试代码中包含使用方法,在.pro文件中配置开发库,在代码中包含.h文件。
2026-01-12 15:38:30 18.79MB 网络协议 UDP组播
1
项目要求单机无网的情况下使用组播传输数据,正常Qt示例无法正常接收,此版本支持(示例来源Qt5.14.1)
2026-01-12 15:35:50 10KB UDP组播
1
"纯Verilog实现万兆网以太网全功能UDP协议,支持ARP与ping功能,Xilinx平台产品化测试验证稳定可靠",纯Verilog实现万兆网以太网UDP协议,支持ARP与ping功能,Xilinx平台产品化测试稳定可靠。,纯verilog编写实现万兆网以太网完整UDP协议,并支持ARP和ping功能,在xilinx平台已产品化测试,稳定可靠 ,纯Verilog编写;万兆网以太网UDP协议;支持ARP和ping功能;Xilinx平台产品化测试;稳定可靠,纯Verilog实现万兆网以太网UDP协议,支持ARP和ping功能,Xilinx平台稳定可靠
2025-12-26 16:11:20 76KB
1
STM32H743微控制器作为ST公司推出的高性能ARM Cortex-M7系列处理器的一员,其性能之强大,使得开发者可以更加灵活地应用于各种复杂的嵌入式系统中。本文主要探讨如何利用ST公司的CubeMX工具来生成STM32H743的裸机代码,并对如何修改代码以支持YT8512C、LAN8742、LAN8720这三种不同PHY(物理层芯片)进行以太网通信的配置,以及实现TCP客户端、TCP服务器、UDP等三种通讯模式。 CubeMX工具为STM32系列处理器提供了一个便捷的图形化配置界面,允许开发者通过鼠标操作即可轻松完成初始化代码的生成。在CubeMX中,可以根据实际需求选择合适的外设以及配置参数,自动生成代码框架。对于网络功能的实现,开发者通常需要配置HARDWARE抽象层(HAL)库以及低层网络驱动。在本文中,我们将重点放在如何修改生成的代码以支持不同的PHY芯片和网络通信模式。 YT8512C、LAN8742、LAN8720都是以太网PHY芯片,它们能与MAC层(介质访问控制层)进行交互,实现物理信号的发送与接收。对于这些芯片的支持,开发者需要在代码中加入相应的硬件初始化代码,以及调整PHY芯片与MAC层之间的通信参数。比如,针对不同的PHY芯片,可能需要修改MII(媒体独立接口)或RMII(简化的媒体独立接口)的配置代码,设置正确的时钟频率和链接速度等参数。 接着,当以太网PHY芯片的硬件初始化完成之后,开发者需要对网络协议栈进行配置。本文中使用的是LWIP(轻量级IP)协议栈,这是一个开源的TCP/IP协议栈实现,对于资源受限的嵌入式系统来说是一个理想的选择。LWIP协议栈支持多种网络通信模式,包括TCP和UDP,开发者可以根据自己的应用需求选择合适的通信模式进行配置和编程。 在TCP模式下,可以进一步配置为TCP客户端或TCP服务器。TCP客户端模式主要用于需要主动发起连接的应用场景,而TCP服务器模式则用于被动接受连接的情况。两种模式在实现上有所不同,开发者需要根据实际应用场景来编写不同的网络事件处理逻辑。而对于UDP模式,由于它是一个面向无连接的协议,因此在编程时会更加简单,只需配置好目标地址和端口,就可以发送和接收数据包。 在修改CubeMX生成的代码以支持不同的PHY芯片和网络通信模式时,需要仔细阅读和理解生成的代码框架,并且具有一定的网络通信和嵌入式系统开发的知识。此外,还需要对STM32H743的HAL库有一定的了解,这样才能更加准确地添加和修改代码。通过上述步骤的配置,开发者最终能够得到一个既可以支持不同PHY芯片,又具备灵活网络通信模式的以太网通信系统。 一个成功的以太网通信系统的搭建,不仅仅依赖于软件代码的编写和配置,硬件连接的正确性同样重要。因此,开发者在编写代码的同时,还应该注意检查硬件连接是否可靠,例如网络接口是否正确焊接,以及相关网络配线是否正确连接等。这样的综合考虑和操作,才能确保整个系统的稳定运行。
2025-12-18 18:54:29 165.51MB stm32 网络 网络 网络协议
1