这是 ShowMeAI 持续分享的速查表系列!本系列速查表包含 200 多张知识卡片,分为『计算机科学』『机器学习』『计算机视觉和深度学习基础』『计算机视觉和深度学习精选专题』4个主题,用以回顾多年的 ML 研究、课程和学习中的所有内容,并为机器学习工程师的面试做准备。 这个文件是『计算机视觉和深度学习精选专题』主题(其他部分的下载链接见评论区),包含以下部分: Object Detection / Segmentation(目标检测,目标分割) Generative Modeling: GANS and VAEs(生成模型) Data Imbalance(数据不平衡) Few-Shot Learning Explainable AI(可解释人工智能) Security / Adversarial Attacks Efficient Deep Learning(高效深度学习) 3D Deep Learning(3D深度学习) Full Stack Deep Learning(全栈深度学习) Machine Learning Implementation(机器学习实现)
1
Selected】全国工会基层组织管理系统使用手册.doc
2022-12-20 18:26:40 3.94MB 文档资料
1
VC编程实现获得单选按钮的选中状态代码VC programming access to the selected radio button code
2022-09-20 19:01:21 12KB radio_button vc_isselected radio_vc vc_access
C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 WinForm窗体开发 Selected(源码)C#编程 Wi
2022-07-01 18:06:58 68KB C#编程WinForm窗体开发
包含artin的<>的部分答案,包括第二章,第六章,......etc.
2021-12-09 16:17:50 770KB artin algebra solutions
1
一篇hmm的经典论文,其中的一些不认识的单词已做了注释,是学习hmm的最好资料了。
2021-12-08 20:09:13 2.62MB HMM 语音识别
1
在element-ui中的el-tree上实现单独拉出一棵树来显示树的选中节点,同时可以在该树上删除已选中节点
2021-04-21 15:42:28 115KB element-ui
1
ISO GUIDE 30:2015 Reference materials - Selected terms and definitions(标准物质/样品-选定的术语和定义),ISO指南30:2015建议与标准物质/样品结合使用时应为其分配的术语和定义,尤其要注意标准物质/样品证书和相应的认证报告中使用的术语。也是CNAS实验室运作所引用参考标准之一!
2021-02-19 13:02:53 3.27MB iso guide 30 material
Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition presents fundamental, classical statistical concepts at the doctorate level. It covers estimation, prediction, testing, confidence sets, Bayesian analysis, and the general approach of decision theory. This edition gives careful proofs of major results and explains how the theory sheds light on the properties of practical methods. The book first discusses non- and semiparametric models before covering parameters and parametric models. It then offers a detailed treatment of maximum likelihood estimates (MLEs) and examines the theory of testing and confidence regions, including optimality theory for estimation and elementary robustness considerations. It next presents basic asymptotic approximations with one-dimensional parameter models as examples. The book also describes inference in multivariate (multiparameter) models, exploring asymptotic normality and optimality of MLEs, Wald and Rao statistics, generalized linear models, and more.
2020-01-09 03:10:01 6.54MB 统计学
1