实验内容七:RIP、OSPF动态路由协议 实验目的:配置RIP、OSFP动态路由 实验任务1:RIP路由配置实验 (1) 添加三台2811型号路由器,为每台路由器添加网络接口模块 先关闭路由器电源,电源开关如下图。 ( 实际操作中,为确保电路安全,只有关机后,才可以在路由器中插入新的网络模块卡,类似往计算机中插入网卡。) 在三台路由器上均添加模块NM-2FE2W,拖拽右下角模块到左上方路由器插槽中,如下图所示。(NM-2FE2W有2个 快速以太网接口)。 插入新模块后,再重新开启路由器。 (2) 添加三台PC机,所有设备之间用交叉线连接,配置网络接口IP地址。 按照拓扑图中地址设置, 配置路由器各网络接口IP地址、子网掩码。 配置PC机各网络接口IP地址、子网掩码、默认网关。 (3)分别查看三台路由器的路由表 Router# show ip route 三个路由表中,只显示了每台路由器直接连接的网络地址和接口。 (4)在三台路由器上,分别配置动态RIP路由协议,自动更新路由表。 R1路由器示例: Router>enable Router#config ### 计算机网络实验报告-实验七:RIP、OSPF动态路由协议 #### 实验目的 本次实验旨在深入理解并实践RIP与OSPF这两种动态路由协议的配置过程。通过具体的操作来掌握如何利用这些协议实现网络间的自动路由发现与更新,从而提升网络的灵活性和效率。 #### 实验任务1:RIP路由配置实验 ##### 任务描述 本任务分为五个主要步骤: 1. **添加三台2811型号路由器**,并为它们添加网络接口模块; 2. **添加三台PC机**,并通过交叉线连接所有设备,并配置IP地址; 3. **查看初始路由表**,确认只包含直连网络的信息; 4. **配置RIP动态路由协议**,使路由器能够自动更新路由表; 5. **验证路由表更新情况**,确保所有路由器之间的连通性。 ##### 实验步骤详解 ### 第一步:配置路由器与网络接口 - **准备阶段**:首先关闭所有路由器的电源。这是为了保证在添加新的网络模块时不会出现短路等安全问题。接着,在每个路由器上安装NM-2FE2W模块,该模块提供两个快速以太网接口。安装完毕后,重新开启路由器。 ### 第二步:连接PC机并配置IP地址 - **连接设备**:将三台PC机分别通过交叉线与路由器相连。然后,根据拓扑图的要求,设置各个网络接口的IP地址、子网掩码以及PC机的默认网关。这些设置确保设备能够在各自的子网内通信。 ### 第三步:查看初始路由表 - **检查路由信息**:在每台路由器上执行`Router# show ip route`命令,可以查看当前的路由表。此时,路由表仅包含直连网络的信息。这是因为尚未配置任何动态路由协议。 ### 第四步:配置RIP动态路由协议 - **启动RIP协议**:在路由器R1上,进入配置模式,使用`Router(config)#router rip`命令启动RIP协议。然后,选择版本2(`Router (config-router)#version 2`)以支持无类别域间路由(CIDR)。 - **通告网络**:使用`network`命令告知RIP协议所连接的网络,如`Router (config-router)#network 192.168.1.0`。对于R1来说,需要通告它连接的所有三个网络。 - **禁用自动汇总**:为了避免不必要的路由汇总,可以通过`Router (config-router)#no auto-summary`命令禁用此功能。 - **完成配置**:完成配置后,使用`Router (config-router)#exit`退出配置模式。 ### 第五步:验证路由表更新 - **更新后的路由表**:在每台路由器上再次执行`Router# show ip route`命令,这次应该可以看到所有连接的网络信息,包括通过RIP学习到的远程网络。 - **连通性测试**:通过`ping`命令测试不同子网内的PC机之间的连通性。例如,从PC0尝试ping PC1或PC2,以验证数据包能否成功穿越路由器到达目标。 #### 结论 通过以上步骤,我们不仅成功地配置了RIP动态路由协议,而且还验证了其在网络中的有效性。RIP协议能够自动发现和更新路由信息,极大地简化了网络管理的工作量,并提高了网络的整体性能。此外,还了解了如何通过配置避免自动汇总等问题,进一步增强了网络的稳定性。 #### 扩展思考 除了RIP之外,实验还提到了另一种动态路由协议——OSPF。虽然本次实验未涉及OSPF的具体配置,但可以预见,OSPF作为更高级别的路由协议,在大型网络中具有更为广泛的应用前景。未来的学习过程中,可以进一步探索OSPF的相关知识,包括其区域划分、LSA(Link State Advertisement)机制等,以更好地理解现代网络架构的设计原理和技术细节。
2025-12-27 14:42:13 529KB 网络 网络 计算机网络实验 实验报告
1
网络拓扑图是描述计算机网络中设备连接方式和结构的图形表示,它是网络设计和管理的重要工具。在互联网和企业内部网络中,网络拓扑图能够清晰地展示路由器、交换机、服务器以及其他设备间的物理连接和逻辑关系。通过网络拓扑图,我们可以直观地理解数据在网络中的传输路径,便于故障排查、性能优化以及安全监控。 RIP(Routing Information Protocol,路由信息协议)是一种古老的距离矢量路由协议,适用于小型网络。RIP基于跳数作为度量标准,限制了网络的规模,最大跳数为15跳。它使用了触发更新和周期性更新机制来传播路由信息,可能导致路由环路问题。为了避免这些问题,RIP引入了毒性逆转和水平分割等技术。 OSPF(Open Shortest Path First,开放最短路径优先)是链路状态路由协议,比RIP更适应大规模网络。OSPF通过泛洪LSA(Link State Advertisements)来建立全网的拓扑数据库,并使用Dijkstra算法计算最短路径树。OSPF支持VLSM(Variable Length Subnet Masking,可变长子网掩码)和CIDR(Classless Inter-Domain Routing,无类别域间路由),具备更快的收敛速度和更高的路由稳定性。 BGP(Border Gateway Protocol,边界网关协议)是用于AS(自治系统)之间的外部路由协议,是Internet上使用最广泛的路由协议之一。BGP主要用于互联网服务提供商(ISP)之间交换路由信息,它通过路径属性来决定最佳路由,支持多路径负载均衡和路由策略控制,能够处理大规模的路由表,对网络的扩展性和稳定性有着重要作用。 网络中使用RIP、OSPF和BGP的主要目的是实现路由选择,即确定数据包从源到目的地的最佳路径。这三种协议各有优势,RIP简单易用但不适用于大网络,OSPF适合企业级网络,而BGP则在互联网层面发挥关键作用。通过网络拓扑图,我们可以更好地理解这些路由协议在实际网络环境中的应用和相互作用,以便于网络规划和管理。提供的图片文件可能包含具体的网络拓扑结构,通过分析这些图像,可以进一步深入理解网络设计和路由协议的实施情况。
2025-12-13 22:58:24 568KB 网络 RIP OSPF
1
### H3C网络排错——深入理解RIP协议 #### RIP协议概览 RIP(Routing Information Protocol),即路由信息协议,是一种典型的距离矢量路由协议。它利用跳数(hop count)作为度量标准来衡量到达目的网络的距离,最大跳数设定为16跳,超过或等于16跳则被视作网络不可达。RIP协议有两个主要版本:RIPv1和RIPv2。RIPv1是一个无类别的路由协议,不支持子网掩码和认证功能;而RIPv2则是有类别的,支持VLSM(可变长度子网掩码)和认证功能,增强了网络的安全性和灵活性。然而,由于其固有的最大跳数限制和广播特性,RIP并不适用于大规模网络环境。 #### 计时器机制 为了确保RIP协议的稳定运行,协议定义了四个关键计时器: 1. **更新计时器**:RIP协议每隔一定周期(默认30秒)向相邻路由器广播路由更新信息,用以同步网络状态。 2. **失效计时器**:当一段时间(默认180秒)内未收到特定路由的更新,该路由将被标记为“垃圾收集”状态,表明其可能已经失效。 3. **清空计时器**:在路由被标记为“垃圾收集”状态后,若继续一段时间(默认120秒)内未接收到更新,则会从路由表中彻底移除该路由。 4. **抑制计时器**:当接收到一条跳数大于当前路由的更新时,RIP会将该路由置入抑制状态,避免因频繁的路由震荡而导致网络不稳定。 #### 防止环路的策略 RIP协议通过以下几种机制来预防和解决路由环路问题: 1. **触发更新**:当检测到网络变化时,RIP路由器会立刻发送更新,而非等待下一个更新周期,加快了收敛速度。 2. **最大跳数限制**:将最大跳数设为15,超过此值的网络被视为不可达,有效限制了网络规模,减少了环路的可能性。 3. **水平分割**:从某个接口接收的路由不会再次从同一接口广播出去,避免了信息的循环。 4. **带毒性逆转的水平分割**:当从某个接口收到的路由不再可用时,会将其以16跳的无效状态再次从同一接口广播,确保网络中存在最新的路由信息,即使它是不可达的。 5. **抑制更新**:接收到跳数增加的路由更新时,不会立即更新路由表,直到超出了抑制期,进一步降低了路由环路的风险。 #### RIP的工作流程与连接特性 - **启动与初始化**:RIP协议启动后,会通过启用RIP的接口发送请求报文,请求对端路由器的路由信息,随后进入正常的运行状态。 - **网络连接**:RIP使用UDP协议进行通信,端口号为520,具有较高的DSCP优先级(CS6),有助于在网络拥塞时保持其数据包的传输质量。然而,由于UDP本身缺乏可靠传输机制,RIP依赖于定期更新来弥补这一不足,确保路由信息的准确传播。 #### RIP消息类型 - **请求消息**:用于初始化阶段或当路由器希望获取对端路由器的完整路由表时发送。 - **更新消息**:用于响应请求消息及周期性地更新自身路由表,实现网络状态的持续同步。 #### RIP协议疑难解析示例 一个常见的问题是关于RIP协议认证的误用。例如,在R1和R2之间的路由器上尝试配置RIP认证,但在RIPv1中,实际上并不支持认证功能,这可能导致即使配置了密码,路由信息仍能被正常通告。这一现象凸显了正确理解RIP不同版本特性的必要性,尤其是对于安全性有更高需求的场景下,应选择使用RIPv2或更先进的路由协议。 RIP协议虽然在简单网络环境中表现出色,但在复杂或大规模网络环境下,其局限性逐渐显现,尤其是在路由环路处理、安全性以及网络规模适应性方面。因此,在设计和维护现代网络架构时,应综合考虑各种路由协议的特点,以选择最合适的方案。
2025-06-19 13:18:37 148KB .pdf
1
内容概要:本文档提供了河北某单位的网络设备详细配置信息,旨在确保不同部门(如市场、人力和产品等部门)能够安全且高效地通信,并保障网络安全稳定。配置内容涉及多个方面:IP地址分配明确到具体的设备和接口,包括交换机、防火墙、路由器、无线控制器以及它们所使用的不同IP地址格式;规定了各设备间的链路连接规则、端口访问控制列表(ACLs)以及链路汇聚的参数;设置了复杂的动态主机配置协议(DHCP)来自动分配IPv4地址并管理无线网络连接的安全特性(例如WiFi认证机制)。同时配置了OSPF及其版本3在内的多种路由协议以确保网络间互联互通和数据转发;并且针对不同网络层次配置GRE over IPSec以保障特定数据传输通道的安全。此外,还设定了详细的SNMP监控与报警策略和一系列安全防护措施。 适用人群:适用于有一定网络基础知识的技术人员或者网络安全管理人员,尤其适用于那些负责构建或维护企业级局域网(LAN),广域网(WAN)的专业人士。 使用场景及目标:该文档可用于指导技术人员按照规范部署网络基础设施,确保各部门网络的有效隔离和通信质量,并提供详尽的操作步骤以便快速搭建一个具备高级别的安全保障的企业内部网络系统,同时也可以用来进行网络故障排查和日常运维工作的参考依据。 其他说明:本文档不仅涵盖了传统的IPv4网络规划,而且对IPv6的支持给予了充分考虑,这使得整个网络架构既兼容现有应用环境又能应对未来发展的需求。值得注意的是,文中多次提到对于不同类型业务流量的不同对待方法,例如带宽限制策略以及针对特定时段采取的访问管控政策等措施都是为了保证核心业务性能的前提下优化资源配置和保护网络安全。
2025-04-22 11:41:50 384KB 路由与交换 RIP OSPF DHCP
1
华为ENSP综合实验OSPF+RIP+VRRP+MSTP
2024-03-27 10:55:02 998KB ensp ospf
1
崭新印通rip 7.0
2023-06-30 21:47:12 25.26MB 崭新印通
1
打印RIP-ErgoSoft PosterPrint RIP V15.1.1.6780数码影像打印生产软件For Win7.docx
2023-03-08 15:37:48 74KB 办公软件
1
今天给大家分享下最近web项目中出现的一个技术难点问题——坐标排序; 如下图所示,要求在前端页面上按顺序将下面5个模块的坐标依次保存至数据库 现在已知信息如下: 1、每个模块分别为一个div 2、每个div可随意拖动(故拖动之后的顺序是错乱的) 3、每个div的坐标(css绝对定位获得的left、top属性值) 现在已通过程序将5个模块div的坐标信息用一个对象数组保存 var p = [ { id: 184, x: 0, y: 0 }, { id: 185, x: 320, y: 0 }, { id: 186, x: 30, y: 60 }, { id: 187, x: 150, y:
2023-02-26 17:54:59 69KB c ip rip
1
RIP路由配置/Cisco packet tracer
2022-12-28 09:18:56 51KB 计算机网络
1