【标题】中的“matlabB样条轨迹规划,多目标优化,7次非均匀B样条轨迹规划”涉及的是机器人路径规划领域中的一个重要技术。在机器人运动控制中,轨迹规划是确保机器人按照预设的方式从起点到终点移动的关键步骤。B样条(B-Spline)是一种在数学和工程中广泛使用的曲线拟合方法,它允许我们生成平滑且可调整的曲线。在这里,提到的是7次非均匀B样条,意味着曲线由7次多项式控制,并且节点间距可以不均匀,这样可以更好地适应不同的路径需求。 “基于NSGAII遗传算法,实现时间 能量 冲击最优”指出该规划过程采用了多目标优化。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种高效的多目标优化算法,它利用种群进化策略来同时优化多个相互冲突的目标函数。在这个案例中,目标是找到一条轨迹,使得它在时间消耗、能量消耗和冲击(通常与舒适度或机械损伤相关)方面达到最优平衡。 【描述】中提到,“换上自己的关节值和时间就能用”,意味着这个MATLAB代码提供了一个通用框架,用户只需输入自己机器人的关节角度序列和期望的规划时间,就可以自动生成符合优化条件的轨迹。代码中的“中文注释”对于初学者来说非常友好,有助于理解每个步骤的功能和意义。 结合【标签】“软件/插件”,我们可以推断这是一个可以应用于MATLAB环境的软件或工具,可能是一个MATLAB函数或者脚本,用户可以下载并直接在MATLAB环境中运行,进行机器人轨迹规划的仿真和优化。 【压缩包子文件的文件名称列表】包括一个HTML文件,可能包含了代码的详细解释或者使用说明;四张图片(1.jpg, 2.jpg, 3.jpg, 4.jpg, 5.jpg)可能展示了轨迹规划的示例或者算法流程图;以及一个名为“样条轨迹规划多目标优化.txt”的文本文件,很可能包含了源代码或规划结果的数据。 这个压缩包提供的资源是一个用MATLAB实现的7次非均匀B样条轨迹规划工具,采用NSGA-II遗传算法对时间、能量和冲击进行多目标优化。用户可以根据自己的关节数据和时间要求,利用这个工具生成最佳的机器人运动轨迹,而且代码有中文注释,便于理解和应用。对于机器人控制和多目标优化领域的学习者和研究者来说,这是一个非常实用的资源。
2024-08-30 15:18:15 426KB
1
【NSGA II多目标精华算法matlab程序实现】 NSGA II(非支配排序遗传算法第二代)是一种在多目标优化领域广泛应用的算法,由Deb等人于2000年提出。它通过模拟自然选择和遗传进化过程来寻找帕累托前沿的解,即在多个目标之间找到一组最优的折衷解。MATLAB作为一种强大的数值计算和可视化工具,是实现NSGA II的理想平台。 **算法流程** 1. **初始化种群**:随机生成初始种群,每个个体代表一个潜在的解决方案。 2. **适应度评估**:对每个个体计算其在所有目标函数下的表现,通常使用非支配等级和拥挤距离作为适应度指标。 3. **选择操作**:使用选择策略(如锦标赛选择、轮盘赌选择等)保留部分个体进入下一代。 4. **交叉操作**(基因重组):随机选取两个父代个体,通过交叉策略(如单点、双点或均匀交叉)生成子代。 5. **变异操作**:在子代中引入随机变异,增加种群多样性。 6. **精英保留**:将上一代中的非支配解保留到下一代,确保帕累托前沿的连续性。 7. **重复步骤2-6**,直到满足停止条件(如达到最大迭代次数或满足性能指标)。 **MATLAB程序结构** 1. **NSGA_II_Abril.m**:这是主程序文件,负责调用各个子函数,执行NSGA II的主要流程。 2. **test_case.m**:可能包含特定问题的测试用例,用于验证算法的正确性和性能。 3. **NDS_CD_cons.m**:非支配排序和拥挤距离计算模块,这部分是评估个体适应度的关键。 4. **tour_selection.m**:选择操作的实现,例如使用“锦标赛选择”。 5. **TestProblemBounds.m**:定义问题的边界条件,确保生成的个体满足问题域的约束。 6. **genetic_operator.m**:基因操作模块,包括交叉和变异操作的实现。 7. **Problem.m**:问题定义,包括目标函数和约束的声明。 8. **NSGA_II_Abril_Test.m**:可能是一个测试函数,用于运行NSGA II并分析结果。 9. **replacement.m**:替换策略的实现,决定哪些个体将进入下一代。 **重要知识点** 1. **非支配排序**:根据个体在所有目标上的表现将其分为多个非支配层,第一层是最优的,随后的层次依次次优。 2. **拥挤距离**:用于处理相同非支配级别的个体,距离越大表示个体在帕累托前沿的分布越稀疏。 3. **遗传操作**:包括交叉和变异,是算法产生新解的主要方式。 4. **多目标优化**:NSGA II解决的问题通常涉及多个相互冲突的目标,寻找一组均衡的解而非单一最优解。 5. **MATLAB编程技巧**:如何高效地使用MATLAB进行大规模计算和数据处理,以及绘制帕累托前沿。 6. **停止条件**:算法何时停止运行,通常基于迭代次数、性能指标或时间限制。 理解并熟练掌握这些知识点,你就能有效地利用MATLAB实现NSGA II算法,解决实际的多目标优化问题。在实际应用中,可能还需要考虑如何调整参数以优化算法性能,以及如何解析和解释结果。
2024-08-19 11:29:16 537KB NSGAII matlab
1
混合NSGAII-多目标粒子群优化算法是一种用于解决多目标优化问题的高效算法,它结合了非支配排序遗传算法(NSGA-II)和粒子群优化(PSO)的优势。NSGA-II是一种基于种群的演化算法,适用于处理多个目标函数的优化问题,而PSO则是一种基于群体智能的全局搜索方法,能够快速探索解决方案空间。 在MATLAB环境下,这个压缩包包含了一系列用于实现这一算法的脚本和函数: 1. `trygatf1.m`, `trygatf3.m`, `trygatf2.m`:这些可能是测试函数,用于检验算法性能。它们可能代表了不同的多目标优化问题,比如测试函数通常模拟现实世界中的复杂优化场景。 2. `NonDominatedSorting.m`:这是非支配排序的实现。在多目标优化中,非支配解是那些没有被其他解在所有目标函数上同时优于或等于的解。这个函数将种群中的个体按照非支配关系进行排序,是NSGA-II的核心部分。 3. `CalcCrowdingDistance.m`:计算拥挤距离,这是NSGA-II中用于保持种群多样性的一个策略。当两个个体在同一非支配层时,根据它们在目标空间中的相对位置计算拥挤距离,以决定在选择过程中谁应该被保留下来。 4. `SelectLeader.m`:选择领袖函数。在混合算法中,可能会有多种策略来选择精英个体,如保留上一代的最佳解或者根据某种规则选择部分解作为领袖。 5. `FindGridIndex.m`:这可能是网格索引查找函数,用于在特定维度或目标空间中分配个体到网格,以辅助解的分类和比较。 6. `DetermineDomination.m`:确定支配关系的函数。每个个体需要与其他个体比较,以确定其在目标函数空间中的支配状态。 7. `SortPopulation.m`:对种群进行排序的函数,可能包括非支配排序和拥挤距离排序等步骤。 8. `DeleteOneRepMemebr.m`:删除重复或冗余个体的函数,确保种群中的每个个体都是唯一的,以保持种群的多样性。 通过这些脚本和函数的组合,用户可以实现一个完整的混合NSGAII-PSO算法,解决多目标优化问题。在实际应用中,用户可能需要调整参数,如种群大小、迭代次数、学习因子等,以适应具体问题的需求,并通过测试函数验证算法的性能和收敛性。这种混合算法的优势在于结合了两种优化方法的特性,既能利用PSO的全局搜索能力,又能利用NSGA-II的非支配排序和拥挤距离策略来保持种群的多样性和进化方向。
2024-07-06 21:22:19 17KB matlab
1
nsga ii算法代码MATLAB 版权 您可以随意使用此算法()进行研究。 所有使用此代码的出版物都应感谢作者。 路易斯·费利佩·阿里扎·韦斯加(Luis Felipe) 一种快速的非支配排序遗传算法扩展,可以解决多目标问题。 2019年3月。电子邮件:,。 @online{NonofficialNSGAIII, title={A Fast Nondominated Sorting Genetic Algorithm Extension to Solve Many-Objective Problems}, author={Luis Felipe Ariza Vesga}, url = {https://github.com/lfarizav/NSGA-III} month = March, year={2019}, lastaccessed = "March 17, 2019", } NSGA-III:一种快速的非支配排序遗传算法扩展,用于解决多目标问题(非官方) 这项工作在C语言中提供了第三种快速进化的非支配排序遗传算法(NSGA-III)实现,扩展了存储在坎普尔遗传算法实验室(K
2023-07-02 21:38:35 1.16MB 系统开源
1
nsga ii算法代码MATLAB 演示“工具箱” 多目标优化的差分进化 这些代码是由()在其理学硕士期间开发的。 在()教授的指导下,在米纳斯吉拉斯州联邦大学就读。 Octave-Matlab文件夹包含Octave的实现(也应在Matlab上工作)。 实现了以下算法: 后验方法(无首选项): – DEMO [1]:具有非支配排序的常规DEMO; – IBEA [2]:使用指标代替DEMO。 先验的或交互式的(具有首选项): – R-DEMO [3]:R-NSGA-II,但改用DEMO; – PBEA [4]:IBEA,但使用参考点; – PAR-DEMO(nds)[5]:我们提出的使用非支配排序的方法; – PAR-DEMO(ε)[5]:相同的方法,但使用指示符。 Fillipe的理学硕士论文可用,并包含了多目标优化和基于偏好的方法的广泛评论。 它还包含对基于首选项的自适应兴趣区域(PAR)框架的更广泛的描述和讨论。 如果您以任何方式使用这些代码,请引用我们的论文[5]: @article{Goulart2016, doi = {10.1016/j.ins.2015.09.015},
2023-04-13 19:25:49 307KB 系统开源
1
NSGAII算法是一个多目标函数优化算法。多目标函数优化有一种方法是,假如现在有n个目标函数fi,首先将每个目标函数乘以一个适当的参数alfai,再将所有的目标函数加起来,得到一个目标函数。这就将多目标函数转化为单目标函数了。
2023-02-02 18:54:34 285KB NSGAII matlab 多目标函数优化 目标函数
1
遗传算法代码,外加个人理解希望大吉你可以多多交流
2022-10-27 22:49:35 11KB nsga3 多目标优化 matlab 遗传算法
1
本资源使用matlab实现多目标白鲸优化算法,能够解决无约束条件和有约束条件的多目标优化问题。
2022-09-02 14:07:00 4.06MB 多目标优化 最优解 白鲸优化算法
1
nsga ii算法代码MATLAB MOLTO-3BP 三体问题的多目标低推力优化器 MOLTO-3BP是一款全自动Matlab工具,用于在受限三体问题中对低推力轨迹进行初步设计。 该软件工具仅适用于从地球的圆形轨道到月球的圆形轨道的转移。 安装指南 安装只需要下载所有文件夹和子文件夹并将其添加到Matlab路径即可。 依存关系 需要使用最新版本的Matlab来运行代码(R2016a或更高版本)。 致谢 该代码由NereidaAgüera在其硕士论文期间开发。 安德烈斯·马可(AndrésMarco)在其硕士论文中修改并增强了部分代码。 也感谢Mick Wijnen的贡献。 快速使用指南 为了优化任务,用户需要调用提供输入结构的主函数molto_3bp.m 。 用户只需要定义离场半径和目标轨道半径。 这里有一个例子: % MISSION from Geostationary Earth Orbit to Low Moon Orbit. %% Initial Data R_e = 6378 ; % [km] Mean Earth's radius R_m = 1738 ; % [km]
2022-07-06 11:12:40 40.16MB 系统开源
1
基于NSGAII的多目标遗传优化算法的matlab仿真,matlab2021a仿真
2022-04-30 22:07:20 75KB matlab 算法 文档资料 开发语言