1.支持多种参数配置,可根据场景需求对音库的语速、音调、音量进行灵活设置,满足个性化需求! 2.中文多音字可通过标注拼音、音调自行定义发音,例如“轻舟已过万重(chong2)山”、“脑筋急转(zhuan3)弯”
2026-02-15 18:58:54 13.55MB 文本转语音 百度语音合成
1
本研究关注的是有机聚阳离子分子膜驱油剂的合成以及其在油田开发中的应用效果。研究工作由马超和赵林完成,发表在首发论文中。 知识点一:有机聚阳离子分子膜驱油剂合成原理 研究中的有机聚阳离子分子膜驱油剂是通过自由基聚合和开环聚合两种方式在水溶液中合成的。反应的引发剂是过硫酸钾和亚硫酸钠组成的氧化还原引发体系。在实验中使用的原料包括环氧氯丙烷和二甲胺。环氧氯丙烷是一个环氧化合物,具有较高的反应活性,可以与含有活泼氢原子的化合物发生开环聚合反应,生成具有羟基的聚合物。二甲胺提供了阳离子结构所需的氮原子,通过其与环氧氯丙烷的反应,可以形成含有季铵盐基团的聚合物链。季铵盐基团是强阳离子基团,能够与油藏中的负电性岩石表面产生电性中和作用,通过静电吸附作用牢固地吸附在油藏的岩石表面。这种特殊的分子膜驱油剂通过在油藏表面形成有序的自组装超薄膜,从而降低原油与岩石表面的吸附力,提高原油的采收率。 知识点二:驱油效果的评价方法 合成后的分子膜驱油剂通过红外光谱和核磁共振分析,证明了产物的结构符合预期设计。红外光谱分析是利用红外光的吸收特性,对分子内部化学键和官能团的振动情况进行分析,是确认化合物结构的重要手段。核磁共振(NMR)是一种利用核磁共振现象来研究原子核的物理技术,可以对分子的结构和化学环境提供详细信息。合成的分子膜驱油剂利用微观岩心光刻模型分析了驱替过程中的运移和分布规律,然后结合实际油田岩心的驱替实验,来评价驱油效果。实验结果表明,这种膜驱剂可以显著提高原油采收率,从驱替实验得到的最终采出程度达到59.19%,与水驱后相比,采收率提高了10.7%。 知识点三:实验仪器与试剂 研究中使用了多种化学试剂和仪器。环氧氯丙烷和二甲胺是主要的反应原料。过硫酸钾和亚硫酸钠作为引发剂,用于生成自由基从而启动聚合反应。反应过程中的温度控制使用了超级恒温水浴,而反应产物的干燥则用到鼓风干燥箱。此外,电动搅拌器用于在反应过程中不断搅拌混合物,乌氏粘度计和Ostwald粘度计用于测量溶液的粘度,从而进一步研究聚合物溶液的物理性质。使用精密天平来称取样品,保证实验测量的准确性。 知识点四:分子膜驱油技术的应用前景 分子膜驱油技术是一种新兴的强化采油技术,它利用膜驱剂在油藏界面形成的单分子层,通过静电吸附作用降低原油与岩石表面的吸附力,形成有序的自组装超薄膜,促进原油的剥离和采收。在油藏开发过程中,提高原油采收率是重要的目标之一。分子膜驱油剂通过降低油-岩之间的黏附力和改变岩石表面的润湿性,可以提高洗油效率,具有良好的应用前景。 这项研究不仅在化学合成方面展示了有机聚阳离子双季铵盐膜驱油剂的合成方法,而且通过实验验证了该合成驱油剂在油田实际应用中可以有效提高原油采收率,为油田的高效开发提供了新的思路和技术途径。
2026-02-12 16:22:18 599KB 首发论文
1
(转载 任意波形发生器芯片AD9102的应用) AD9102任意波形合成器的硬件设计、软件配置,包括上电初始化、时钟电路、控制电路等,以及关键的软件操作函数和测试实例。 硬件设计 1.AD9102最小系统 2.时钟电路 3.输出信号处理电路 4.控制电路 5电源电路 软件设计 1.单片机外设配置 2.AD9102初始化和基本交互 3.AD9102芯片操作 结果测试 1.实物图 2.正弦波输出测试 3.三角波输出测试 4.方波输出测试 5.任意波输出测试
2026-02-06 16:39:04 54.33MB
1
sshXunFeiTTS_UnrealEngine5_讯飞在线语音合成插件集成_虚幻引擎插件开发_支持讯飞语音合成API_流式音频处理_蓝图节点异步操作_多版本兼容性_音频流播放功能_文.zipXunFeiTTS_UnrealEngine5_讯飞在线语音合成插件集成_虚幻引擎插件开发_支持讯飞语音合成API_流式音频处理_蓝图节点异步操作_多版本兼容性_音频流播放功能_文.zip 虚幻引擎作为一款功能强大的游戏开发工具,它的强大不仅在于其图像渲染能力,还在于它对各种音频处理技术的集成。XunFeiTTS-UnrealEngine5插件的开发正是在此基础上进行的。该插件集成了讯飞在线语音合成API,使得开发者能够轻松地在虚幻引擎项目中使用讯飞的语音合成服务。通过该插件,开发者可以实现文本到语音的实时转换,这对于游戏中的角色对话、指导性语音提示等方面有着极为重要的应用价值。 在集成该插件后,虚幻引擎的蓝图系统能够直接操作讯飞API,使得整个语音合成过程可以被可视化编辑。插件还支持流式音频处理,这使得音频的合成过程可以分批次进行,不需要等待全部文本处理完毕再进行音频输出,这对于提高游戏的响应速度、提升用户体验有着显著效果。 插件的蓝图节点设计采用异步操作方式,允许在不阻塞主游戏进程的情况下进行音频处理,这对于提升游戏的性能和稳定性有着积极作用。此外,它还具有良好的多版本兼容性,这意味着它能够适应不同版本的虚幻引擎,使得开发者在升级或更换虚幻引擎版本时,无需担心插件的适配问题。 音频流播放功能的集成,使得在游戏运行过程中,可以根据不同的游戏场景动态加载和播放音频流,实现了音频资源的高效利用。这一功能对于提高游戏音效质量、丰富游戏内容和体验有着不可忽视的作用。 结合了讯飞语音合成API的强大能力,XunFeiTTS-UnrealEngine5插件不仅能够提供自然、流畅的语音合成效果,还能够在项目中进行高度定制化,满足不同游戏或应用的需求。开发者可以根据项目的具体情况,调整语音的语速、音调、音色等参数,实现更为个性化和多样化的语音输出。 插件的使用门槛并不高,通过附赠的资源文件和说明文档,即使是初学者也能够快速上手。文档中详细介绍了如何安装、配置以及使用插件,这对于希望能够快速在项目中集成高质量语音功能的开发团队来说,无疑是一个极大的便利。 XunFeiTTS-UnrealEngine5插件是游戏开发领域中一款集成了先进语音合成技术的实用工具,它的开发和发布,无疑将推动游戏及其他应用领域在语音交互体验方面的发展。
2026-02-06 12:07:35 366KB python
1
合成孔径雷达(Synthetic Aperture Radar,SAR)是一种利用雷达波进行远程遥感成像的技术,尤其在恶劣天气和夜间环境下仍能提供高分辨率的地面图像。它的工作原理是通过移动的雷达系统发射脉冲信号,然后接收反射回来的回波,通过计算这些回波的时间差和相位差来确定目标的位置、形状和特性。 一、SAR基本原理与工作模式 1. 基本原理:SAR系统通过飞行平台(如卫星、飞机)携带的雷达发射器向地面发送电磁波,这些波经过地面反射后被接收器捕获。由于雷达系统在空间中的运动,它实际上模拟了一个大口径天线,从而获得更高的空间分辨率。 2. 工作模式:SAR有多种工作模式,包括单极化、双极化、多极化等,其中双极化和多极化可以提供更丰富的地物信息。此外,还有沿轨扫描模式、交叉轨扫描模式、聚焦模式等,每种模式对应不同的成像策略和应用领域。 二、SAR成像技术 1. 静态聚焦:这是最基本的SAR成像方法,通过匹配滤波或逆合成孔径处理实现图像聚焦。 2. 动态聚焦:在实际应用中,由于平台运动不规则或目标区域的地形起伏,需要动态聚焦技术对回波数据进行实时或后期校正。 3. 波达方向(Doppler Beam Sharpening,DBS):利用Doppler效应改善成像质量,提高图像的分辨率和信噪比。 4. 高分辨率成像:通过改进的算法和处理技术,如稀疏表示、压缩感知等,实现更高分辨率的图像获取。 三、SAR图像处理与分析 1. 图像校正:包括几何校正(去除平台运动和地球曲率的影响)和辐射校正(消除大气衰减和雷达系统的非线性影响)。 2. 图像分类:通过机器学习和模式识别技术,对SAR图像进行地物分类,如区分森林、水体、建筑物等。 3. 变化检测:通过比较同一地区的不同时间的SAR图像,识别地表变化,如城市扩张、植被退化等。 四、SAR应用领域 1. 地形测绘:SAR可用于生成数字高程模型(DEM),为地质灾害预警、地形分析等提供数据支持。 2. 环境监测:例如洪水、森林火灾、冰川消融等自然灾害的监测。 3. 军事侦察:SAR能够穿透云雾,用于全天候的军事侦察和目标识别。 4. 城市规划:对城市建筑、交通网络进行高精度监测,辅助城市规划和管理。 5. 资源勘探:如矿产资源、石油天然气的探测。 合成孔径雷达技术涉及了雷达原理、信号处理、图像分析等多个领域,是现代遥感和地理信息系统中不可或缺的一部分。通过深入学习和理解SAR的相关论文、PPT及教程资料,可以提升我们对这一技术的认识,进一步拓展其在科研和实际应用中的潜力。
2026-01-16 18:30:59 50.88MB 合成孔径雷达
1
Piper是一个专为树莓派4优化的快速、本地化神经网络文本转语音(TTS)系统,支持多种语言和声音。它基于VITS模型,通过ONNX格式实现高效运行,适用于嵌入式设备。Piper提供高质量的语音合成,支持流式音频输出、JSON输入、多说话人模型和GPU加速等高级功能。广泛应用于智能家居、辅助技术和语音交互等领域。Piper开源免费,易于安装和使用,开发者还可训练自己的语音模型。 Piper是一个为树莓派4量身定做的文本转语音系统,它采用了VITS模型作为核心算法,由于使用了ONNX格式,这保证了它在嵌入式设备上运行的高效率。Piper的本地化特性使其支持多种不同的语言和声音,满足了多语言环境下用户的需求。该系统不仅能够进行高质量的语音合成,而且还支持流式音频输出,这意味着它可以实时处理文本并转换为语音,提高了用户的交互体验。 Piper还支持JSON输入,这种数据交换格式的使用,让系统能够处理各种结构化的文本数据,并且能够灵活地进行语音输出。此外,Piper还集成了多说话人模型,这意味着它可以根据不同的说话人进行语音的合成,进一步提高了语音合成的自然度和多样性。借助GPU加速,Piper在处理复杂模型时的计算效率大大提升,这对于需要快速响应的应用场景尤为重要。 Piper的应用场景相当广泛,它在智能家居控制、辅助技术和语音交互等领域的实际应用中表现出色。智能家居领域,Piper可以作为家庭自动化系统中的人机交互界面,用户可以通过语音指令控制家中的各种智能设备。在辅助技术方面,对于有视觉障碍的用户,Piper能够提供一种全新的信息获取方式,即通过听觉来接收文本信息。语音交互则是Piper的另一个重要应用领域,它能够为各种应用程序和服务提供更为人性化和自然的交流方式。 Piper的开源特性使其对于开发者而言非常友好,它不仅易于安装和使用,还允许开发者根据自己的需求训练特定的语音模型。这为开发者提供了极大的便利,他们可以创建符合特定场景或行业需求的定制化语音服务。整体来说,Piper为树莓派平台的语音交互应用提供了一个强大的解决方案,它的多语言支持、高性能以及丰富的功能特性,使其成为了该领域的重要工具。
2026-01-14 10:37:32 14KB 人工智能 语音合成
1
提出了一种基于直接数字频率合成器芯片AD9959的相位差可调节的正弦信号发生器的设计方法。整个设计以直接数字频率合成(DDS)技术为核心,采用复杂可编程逻辑器件(CPLD)和ARM实现整个系统的控制。该信号发生器可产生4路0~200 MHz频段的频率、相位、幅值均可调的正弦信号,并且可以编程设定输出通道间的相位差。实验结果表明,该信号发生器产生的信号稳定,可实现任意2个通道间的相位差,频率切换速度快,有广泛的应用价值。
1
内容概要:本文档提供了一段用于处理Sentinel-1卫星数据的Google Earth Engine (GEE)脚本。该脚本首先定义了感兴趣区域(Unteraargletscher),并设置了日期范围为2024年8月1日至8月31日。接着,从COPERNICUS/S1_GRD数据集中筛选出符合指定条件的图像,包括位置、日期、成像模式(IW)和轨道方向(降轨)。进一步筛选出同时包含VV和VH极化通道的图像,并统计符合条件的图像数量。最后,对VH通道的数据进行了最小值、平均值、最大值、中位数和首张图像的合成处理,并将结果可视化显示在地图上。 适合人群:具备一定遥感数据处理和编程基础的研究人员或工程师,尤其是对Sentinel-1数据和Google Earth Engine平台感兴趣的用户。 使用场景及目标:①筛选特定时间段和地理位置的Sentinel-1图像;②提取并处理VV和VH极化通道的数据;③通过不同的统计方法(如最小值、平均值等)生成合成图像并进行可视化展示。 阅读建议:在阅读此脚本时,建议读者熟悉Google Earth Engine的基本操作和Sentinel-1数据的特点,同时可以尝试修改参数(如日期范围、地理位置等)来探索不同条件下的数据变化。
1
变化检测是一种重要的遥感图像处理技术,主要用于识别和分析地物在时间序列中的变化情况。在本案例中,我们关注的是使用合成孔径雷达(SAR)数据进行变化检测。SAR是一种主动式遥感系统,它利用雷达波对地表进行探测,不受光照条件限制,可以在夜间和恶劣天气下获取地表信息。 合成孔径雷达技术通过发射和接收回波信号,创建高分辨率的二维图像。SAR图像的变化检测主要是比较不同时间点的两幅或多幅SAR图像,寻找地表反射特性的差异,从而推断出地物的变化信息,如建筑物的增长、森林砍伐、洪水淹没等。 变化检测的步骤通常包括以下几个阶段: 1. **图像预处理**:这一步包括辐射校正、几何校正和去噪等,目的是使图像在空间和辐射上保持一致,以便后续的比较分析。 2. **图像配准**:由于SAR图像可能在不同的时间、不同的飞行方向获取,需要将它们精确对齐,确保同一地物在图像中的位置相同。 3. **图像融合**:有时会将SAR图像与可见光或近红外图像融合,利用多模态信息提高变化检测的准确性。 4. **变化指标计算**:这一步是关键,常见的方法有差分法(如绝对差分、相对差分)、指数法(如归一化差分指数、结构相似性指数等)、分类对比法(比较不同时间点的分类结果)等。 5. **变化检测结果分析**:根据计算出的变化指标,可以使用阈值分割、聚类分析等方法确定变化区域。 6. **后处理**:包括去除假阳性和假阴性,例如使用时间序列分析来验证变化的稳定性,或者结合地面实况数据进行验证。 在“变化检测新下代码”这个压缩包中,可能包含用于执行这些步骤的算法代码。这些代码可能涉及多种编程语言,如Python、MATLAB或R,它们可能利用了专门的遥感库,如GDAL、OpenCV或SARPy等,实现SAR图像的读取、处理和分析。代码的使用者需要有一定的编程基础和遥感知识,才能理解和运行这些代码,以进行自己的变化检测研究。 变化检测是SAR遥感应用的重要领域,它为环境监测、灾害评估、城市规划等提供了有力工具。通过理解和运用提供的代码,研究人员可以更有效地检测和理解地表变化,从而支持决策和科学研究。
2026-01-05 23:49:37 69.57MB 合成孔径雷达 变化检测 代码
1
基于CMOS工艺的变压器耦合毫米波功率放大器芯片设计.pdf内容概要:本文围绕CMOS工艺下的毫米波功率放大器芯片设计展开研究,重点解决了毫米波频段下无源器件设计困难、晶体管增益低、输出功率不足等关键技术难题。首先系统总结了具有阻抗变换功能的毫米波片上变压器式巴伦的设计方法,并提出通过调整中心抽头改善其平衡性的优化方案,同时建立了相应的集总元件模型以支持电路仿真与设计。随后,采用90nm CMOS工艺设计了八路输入、两路输出的功率合成变压器,并基于该结构实现了Q波段高输出功率功率放大器,实测在45GHz频率下增益达20.38dB,饱和输出功率为21.08dBm,峰值功率附加效率为14.5%。最后,针对W波段(100GHz)晶体管增益极低的问题,提出采用变压器耦合晶体管栅极与漏极信号的创新结构,在不牺牲效率和线性度的前提下提升增益约2dB,仿真结果显示小信号增益为14.8dB,饱和输出功率10.34dBm,峰值PAE为4.5%。; 适合人群:具备射频集成电路基础知识,从事毫米波芯片设计、高频电路研发的工程师及高校研究生。; 使用场景及目标:①掌握毫米波片上巴伦与变压器的设计与建模方法;②学习基于CMOS工艺实现高输出功率Q波段功放的设计流程与测试技术;③探索在晶体管接近截止频率时通过变压器耦合提升增益的创新电路结构。; 阅读建议:本文理论与实践结合紧密,建议读者结合电磁仿真工具(如HFSS)与电路仿真平台(如Cadence)进行复现,重点关注巴伦建模、功率合成结构设计及W波段增益提升机制,同时注意工艺参数、寄生效应与测试校准对性能的影响。
2026-01-05 15:37:42 2.75MB CMOS工艺 变压器耦合 功率合成
1