题目:2DPSK调制与解调 软件:system view 要求:必须用科斯塔斯环进行解调 仿真结果:整个仿真并未加高斯噪声;2DPSK调制没问题;科斯塔斯环的输出波形无法做到i路与q路相位相反
2022-10-29 09:06:07 4KB systemview 2DPSK 科斯塔斯环
1
clear all; close all; clc; % 最近同步技术里面有很多关于costas环的帖子,很多集中讨论环路滤波的,也有自己做了程序发出来。但都没有一个完整的结论和系统的有方向性的讨论点.最近做了一个simulink仿真.个人认为现有的所谓经典方法很难被别人掌握.因此,从锁相环的原理出发,结合现成的经典方法,做了这个仿真.说明一下: % 一个是高载频,一个是低载频的。低载频的我用的FIR代替的积分清零器,大家可以换成积分清零器件.阶数应该几阶就可以了。 % % 1:如果是没有进行成形滤波的数据,那么信息数据率不要太高,以防止在锁定 时间内发生极性翻转,这样就锁不住了。(说简单点就是信息数据对载波的调制作用引起的载波相位的突变.) % % 2.积分清零的目的是滤除倍频信号,在系统采样率(系统时钟)相对中频信号频率只是几倍关系时,积分清零阶数可以很低,几阶.原理在于数字频率对模拟频率的 归一化. % % 3.鉴相方式非常关键.将鉴频差和相差结合起来,是一个新的发现.这样可以很好的锁定.通过调整对应的两个控制增益,便可独立的控制相位和频率的锁定速度.相差(信号点所在的位置的相位)和频差(相位点旋转的方向和快慢)可以很直观的在星座图上看出来. % % 4.环路滤波器的输出进行积分操作,能够很好的把反馈送入NCO. % % 5.环路滤波器参数设置没什么新意思.阻尼0.707.噪声带宽25 % % 欢迎大家下回去琢磨,然后讨论!论坛空间也有限,想好了再把你的问题说出来,谢谢! % 阅过之后,更敢无新意,我的看法如下: % 1,costas loop在不同的应用场合(诸如,符号速率,动态应力,多谱勒,信道环境等等),其环路设计就会有非常大的差异. % 比如,在某些情况下,环路滤波的前或后,可能要进行环滤更新操作.以匹配NCO的需要.但通常的科环并不需要这样的设计等等. % 2,变型的科环很多,难以统一一种模式. % 3,经典的科环理论很重要,很多变型都是根据不同的应用进行改进的. % 切忌:想以一种仿真结论来定论所有形式的科环设计. % 同意楼上的。掌握一个跟踪环路的本质是重要的,光Costas环就有好多种,关键看你要应用在什么场合,实现复杂度有什么要求。 % 如果楼主想对costas环有点更深入的认识,建议考虑一下低SNR环境下或者高动态环境的载波跟踪这种例子可能会更有些帮助。这种情况下每一个环节的设计考虑就都不像你所说的那样简单了。至少不会有“环路滤波器参数设置没什么新意思.阻尼0.707.噪声带宽25”。 % 楼上两位说得很有道理,确实,针对不同的应用场合,环路的参数设置,滤波器的设计,鉴相方式,都会有所变化. % 我发这篇帖的目的,就是希望大家可以从costas环原理的角度,通过仿真,掌握各种参数,各个关键部分,对环的影响,从而真正掌握锁相环的设计方法.而不是每遇到新问题就失去了主动权,找不到北. % % 还希望大家够针对具体的锁相环的问题,各抒己见.不泛泛而谈,深入下去,发扬我们大家的研学精神! % gardner定时同步算法是一种适合高速信号的 % 反馈式算法,它只需要每符号两个采样点,且载波 % 相位误差不影响算法的定时性能,鉴于以上优点, % 该算法适合多种应用场合。 % % 它是从平方律定时推导出的,依靠检测码元转换处的 % 过零点来定时,因此数字基带信号的归零特性很大程度 % 上影响算法的性能,一般升余弦滤波器成型的数字波形 % 在码元转换点是不归零的,使码元转换点归零,一般使用 % 模拟系统中针对平方律定时的预滤波方法,理论和实践证明 % 这种方法是有效的,几乎可以消除定时抖动。 % % 这里分享我找到的有关gardner算法的一些文章,基本涵盖了 % 各个放面的内容,包括算法原文,算法性能分析,算法的应用 % 和改进方面的文章 % 锁相环有几个体现捕捉性能的参数: % 对于无源滤波二阶环路 % 捕捉带=4*sqrt(K*阻尼因子*环路自然角频率) % 快捕带= 4*阻尼因子*环路自然角频率 %% % 对于二阶环 % 根据带宽与阻尼系数的关系 % 一般取阻尼系数为0.707 % 剩下的就是确定环路带宽了 % 当然要确定最终的k1k2,鉴相或者鉴频增益也是很重要的 % GPS的跟踪,一般采用数字锁相环的结构. 环路等效噪声带宽的设计数字环路的一个重要参数, %该参数影响着环路的收敛速度,跟踪精度,以及环路可收敛的输入频差范围等, 反过来带宽的设计也由这些因素决定. % % 5楼给的数值应该分别是载波锁相环环路噪声带宽, 锁频环的噪声带宽以及码环的噪声带宽. %通过噪声带宽可以求出环路滤波器的参数,(通常限定在3阶环路以下), 具体方法可以参考书籍: % GPS原理及应用 第一, 二版, 还有一本是fundamentals of global positonging system receiver % 这两本书比较适合初学者. % 经常有师弟师妹问我怎样学习LDPC码,现在我将个人学习LDPC码的心得写在下面,以供参考。 % 1. 了解LDPC码的基本概念(主要是校验矩阵与Tanner图的关系)之后,学习LDPC码的和积译码算法。这里建议首先用概率测度推出无环图下,变量节点和校验节点消息的更新公式,透彻理解“消息”、“更新”和“传递”的含义。 % 2. 看LDPC码和积译码算法的程序。要点在双循环链表、两个消息更新的计算步骤(检验节点和变量节点运算,也叫水平步骤和垂直步骤)。(c 程序可以在网上Mackey的网站下,我这也有)。 % 3. 对LDPC码的和积译码算法充分理解之后,可以看密度进化理论及其高斯逼近算法,推倒文章中的公式是很有助于理解和积译码算法的。 % 4.经过步骤3,我们应该对什么样的LDPC码性能会好有一个初步的理解,这样我们可以试着设计 LDPC码。(高斯逼近和密度进化程序我这也有) % 5.理解信道编码定理和Turbo原理,“码长”“随机”“迭代译码“”对于一个实用好码很重要。 % 另外,在这之前最好弄清楚信噪比,编码速率,BER和FER的含义。 %% gardner 位同步测试程序 %% M.Moeneclaey提出的数控方法 %% m(k+1)-m(k)=int[Ti/Ts+uk]; %% u(k+1)=[uk+Ti/Ts]mod1 clc;clear;format long; fb=2e+6; %% 符号速率 fs=56e+6; %% 采样速率 ps=0; %%%%%%%%%平方根滤波器%%%%%%%%%因为是采样率是28倍符号速率,所以采用了500阶的滤波器系数,保证通带和阻带的特性 load FIR2M; Num=FIR2M; i=0;q=0; %%%%%%%%建立数据缓存区间%%%%%%%%%%%%% dataI=zeros(1,501); dataQ=zeros(1,501); bufferI=zeros(1,501); bufferQ=zeros(1,501); bitsyninI=zeros(1,4); %% 插值滤波器的输入,每次插值需要连续四个数据 bitsyninQ=zeros(1,4); GarI=zeros(1,3); GarQ=zeros(1,3); %%========环路滤波器=============== K0=fb*0.05; %% 环路的NCO增益 C2=2; Alpha=0.5; Kd=2*C2/((1-Alpha^2/4))*sin(pi*Alpha/2); %% 鉴相增益 K=K0*Kd; %% 环路增益 wn=0.03*fb; %% 环路滤波器的自然频率 Kesai=1/sqrt(2); %% 环路滤波器的衰减因子 %%============ 环路滤波器系数设计=========== g1=2*wn*Kesai/K; g2=wn^2/fb/K; g=[-g1;g1+g2]; cnt=0; %% 控制数据输出 LPF=0; %% 环路滤波输出 pre_TED=0; %% 前一鉴相值 TED=0; %% 当前鉴相值 %% NCO控制参数 deltamk=1; deltamkcnt=0; V=fs/fb/2; uk=0; t=0.014; %% 仿真时间 TimeLen=fix(t*fs); %%-------建立存储文件------------------------------------- if (exist('data1.txt')>0) delete data1.txt; end fid1=fopen('data1.txt','a+'); if (exist('data2.txt')>0) delete data2.txt; end fid2=fopen('data2.txt','a+'); if (exist('data3.txt')>0) delete data3.txt; end fid3=fopen('data3.txt','a+'); disp('QPSK---------BitSync') for k=1:TimeLen ProcessShow(k,TimeLen,25); %%过程显示 ps=ps+fb; %% if(ps>=fs) ps=ps-fs; i=randint*2-1; %% 输入随机数据 输出转化为双极性 q=randint*2-1; end dataI=[dataI(2:end),i]; %% 没有采用常规的插0方法,而是采用采样保持的方式 dataQ=[dataQ(2:end),q]; di=dataI*Num'; %% 成型滤波,Num为501位平方根升余弦滤波器 dq=dataQ*Num'; T_sign=(di+1j*dq); %% 发送信号 %%%%%%滑动窗存储接收信号,并完成卷积运算%%%%%%%%%%%%% bufferI=[bufferI(2:end),real(T_sign)]; %滑动窗存储接收信号 bufferQ=[bufferQ(2:end),imag(T_sign)]; ri=bufferI*Num'; %% 匹配滤波 rq=bufferQ*Num'; fprintf(fid1,'%f,%f\n',ri,rq); %%存储匹配滤波后的波形 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% deltamkcnt=deltamkcnt+1; bitsyninI=[bitsyninI(2:4),ri]; %%存储插值滤波前的连续4点 bitsyninQ=[bitsyninQ(2:4),rq]; if (flag) flag=0; C_4 = 0.5 * uk^2 - 0.5 * uk; % c_4=c(-2);其中内插系数为BS_Alpha=0.5 C_3 = -0.5 * uk^2 + ( 0.5 + 1 ) * uk; % c_3=c(-1) C_2 = -0.5 * uk^2 + ( 0.5 - 1 ) * uk + 1; % c_2=c(0) C_1 = 0.5 * uk^2 - 0.5 * uk; % c_1=c(1) C=[C_1,C_2,C_3,C_4]; Inter_I=bitsyninI*C'; %插值输出 Inter_Q=bitsyninQ*C'; GarI=[GarI(2:3),Inter_I]; %用数组存放,表示I(k-2),I(k-1),I(k) GarQ=[GarQ(2:3),Inter_Q]; cnt=mod(cnt+1,2); if (cnt==1) %% 以数据速率完成环路滤波 I=Inter_I; %% 同步数据输出 Q=Inter_Q; fprintf(fid2,'%f,%f\n',I,Q); %% 存储同步后的I,Q路数据 TED=GarI(2)*(GarI(3)-GarI(1))+GarQ(2)*(GarQ(3)-GarQ(1)); %Error=I(k-1)*[I(k)-I(k-2)]+Q(k-1)*[Q(k)-Q(k-2)]; LPF=[pre_TED,TED]*g+LPF; %环路滤波 pre_TED=TED; end end V=V-LPF/256; %V近似等于Ti/Ts; if (deltamkcnt==deltamk) flag=1; %%产生插值脉冲 deltamkcnt=0; %%计数器, deltamk=fix(uk+V); %%计算下一脉冲时刻 uk=mod(uk+V,1); V=fs/fb/2; %%保证V是一个近似等于Ti/Ts的值 end fprintf(fid3,'%f,%f,%f,%f\n',uk,deltamk,LPF,TED);%%%%%%%%%%%%%%%%存储观测参数 end disp('The End!'); load data3.txt; figure; plot(data3(:,1)) title('小数间隔索引uk'); figure; plot(data3(:,2)) title('整数间隔索引差M') load data2.txt figure;plot(data2(12000:end,1)+1j*data2(12000:end,2),'.') title('同步后的星座图')
2022-04-28 21:51:30 9KB 科斯塔斯环
1
通信原理课程设计中的一部分,还比较不错的
2022-02-05 21:55:15 33KB 滤波器
1
利用costas环法实现载波同步,假设实际发送信号的载波频率为3.563MHz,本地初始频率为3.5628MHz,画出锁相环跟踪的频率与实际的载波频率图形,并将两者进行比较。
2021-12-12 17:10:56 2KB 科斯塔斯环 同步法
1
科斯塔斯环法优缺点 由上式可见,当( -  )很小时,除了差一个常数因子外,电压ve 就近似等于解调输出电压m(t)。所以科斯塔斯环本身就同时兼有提取相干载波和相干解调的功能。 优缺点: 1、不需要对接收信号作平方运算,工作频率较低。 2、为了得到科斯塔斯环法在理论上给出的性能,要求两路低通滤波器的性能完全相同。 3、由锁相环原理可知,锁相环在( -  )值接近0的稳定点有两个,在( -  )等于0和 处。所以,科斯塔斯环法提取出的载频也存在相位含糊性。
2021-12-07 17:23:58 970KB 同步原理
1
科斯塔斯环法工作原理 工作原理 a点的压控振荡电压为: b点的压控振荡电压为: c点的电压: d点的电压: e点的电压: f点的电压: g点的电压: 上式中的( -  )是压控振荡电压和接收载波相位之差。
2021-11-10 20:22:01 970KB 同步原理
1
基于FPGA实现Costas环的集成开发环境、Verilog HDL开发语言,,科斯塔斯环,载波同步,FPGA,数字通信,Verilog基于FPGA实现Costas环的集成开发环境、Verilog HDL开发语言,,科斯塔斯环,载波同步,FPGA,数字通信,Verilog基于FPGA实现Costas环的集成开发环境、Verilog HDL开发语言,,科斯塔斯环,载波同步,FPGA,数字通信,Verilog基于FPGA实现Costas环的集成开发环境、Verilog HDL开发语言,,科斯塔斯环,载波同步,FPGA,数字通信,Verilog
1
含对于2PSK数字调制利用科斯塔斯环法进行的载波同步,含载波提取对比图和输出信号图等代码直接可运行,已包含注释
1
通信原理课程设计科斯塔斯环法电路,MATLAB中的simulink电路。
2021-09-15 13:26:52 22KB 通信课程设计 科斯塔斯环法
1
Analog Devices 公司的射频应用工程师Jeffrey Feigin写的一篇关于科斯塔斯环设计的实用文章。文中对科斯塔斯环的设计进行了详细的分析和说明,是一篇不可多得的科环设计好文章。
2021-05-11 10:52:34 177KB 科斯塔斯环 costas loop
1