为满足某型飞机塔康设备检测仪器要求,对其提供稳定、可靠、多样的塔康地面信标信号。设计利用Altera公司的EP4CE6E22C8为控制核心,以DAC813JP为DA转换器,运用DDS基本原理,通过QuartusII 软件编写塔康地面信标信号发生器的每个单元模块,最终完成整个设计方案。并进行了Matlab与QuartusII相结合的仿真验证,同时设计连接了外部电路。相较于传统塔康地面信标信号发生器操作简单,便于升级,能够满足检测仪器的各项要求。
1
直接数字频率合成信号发生器(DDS)设计
2023-04-12 18:11:33 204KB AD9851; FPGA
1
dds (直接数字频率合成器),基于FPGA
2023-01-14 23:35:02 730KB dds
1
设计了基于直接数字频率合成(DDS)的频谱分析仪。它依据外差原理,实现频率范围为1~30 MHz的信号频谱分析。通过采用DDS专用器件AD9851产生稳定的扫频信号。被测信号是经AD835与本振信号混频,再放大、滤波、检波的信号。将被测信号与扫频信号分别输入示波器的X,Y端,即可获得频谱图。此外,该仪器还具有识别调幅、调频和等幅波信号及测定其中心频率的功能。
1
为了提高数字调制信号发生器的频率准确度和稳定度,并使其相关技术参数灵活可调,提出了基于FPGA和DDS技术的数字调制信号发生器设计方法。利用Matlab/Simulink、DSP Builder、QuartusⅡ 3个工具软件,进行基本DDS建模,然后在DDS模块的基础上,通过单片机等电路组成的控制单元的逻辑控制作用,根据通信系统中数字调制方式的基本原理,设计并实现了数字调制信号发生器,从而实现二进制频移键控(2FSK)、二进制相移键控(2PSK)和二进制幅移键控(2ASK)3种基本的二进制数字调制。所得仿真结果表明设计方法的正确性和实用性。
1
针对模拟信号源存在精度低、频率范围小,以及定制直接数字频率合成信号源的控制方式、置频速率等不满足系统要求的问题,设计了一种基于FPGA的信号源。该信号源基于直接数字频率合成原理,采用FPGA的模块化设计方法,实现了频率、相位、幅值可调的正弦波、方波、三角波等波形输出。实验表明,该信号源输出波形质量好,频率分辨率高,控制灵活、方便。
1
信号发生器在实验室和电子领域的使用频率很高,在教学科研、生产、過感巡测等众多场合都有着广泛的应用。随着当前科学技术的发展,人们对信号源的分辨率、频谱纯度、频率范围等提出的要求越来越高,而采用以往的频率合成方法设计的信号源在技术上存在分辨率不高、频率精度低、频带窄、输出波形种类少等不足,不能满足实际需要。基于DDS的高精度信号源的出现使以上问题的解决变为可能。   直接数字频率合成(DDS)技术是于二十世纪七十年代提出的一种频率合成技术。DDS采用全数字的频率合成方法,采用DDS技术设计的信号发生器具有极高的频率分辨率和精确度,并具有频率切换速度快、相位噪声低、频率切换时相位连续等优点,克服了传统模拟信号源的缺点和不足,是目前信号发生器研究的方向之一。本设计以AD公司的直接数字频率合成芯片AD9850为核心,以ATMEL公司的单片机芯片AT89852为控制核心,液晶屏作为显示界面,对信号发生器进行设计。本设计输出频率范围可以达1Hz~10MHz,频率分辨率为0.1Hz,频率精确度达到106.   本文首先对频率合成技术的历史及发展趋势进行了介绍,分析了几种主要的频率合成原理,比较了其优缺点,并根据DDS技术的显著优点,最终确定了采用DDS技术研制信号发生器。然后对DDS的原理进行了详细阐述。主要包括DDS的组成结构介绍,频谱分析和杂散分析,并给出了DDS技术在应用设计中的杂散抑制方法。   接下来对信号源系统的实现进行了介绍。首先对系统整体的软硬件设计进行了详细的说明。然后分别对系统的软件设计及硬件设计进行了详细阐述。信号源系统的硬件模块设计包括电源模块、人机交互模块、单片机控制模块、AD9850 信号发生模块以及信号处理模块等部分。系统软件部分主要介绍了软件部分整体设计、AD9850频率控制字设计、按键扫描模块、液晶显示模块。对信号源系统的调试分析进行了阐述。主要对信号源系统的上电调试进行说明,并对频率输出信号进行了测试分析。最后对全文进行了总结,并对下一步工作进行了展望。
2022-05-06 17:03:54 6.75MB 控制器/处理器
1
直接数字频率合成技术,频率综合技术概述,PLL的构成,DDS原理,DDS的信号质量分析,DDS的优点与不足
2022-05-06 15:21:20 496KB DDS
1
直接数字频率合成器开题报告
2022-05-04 19:04:36 588KB 文档资料
介绍了无线收发系统的设计过程,该系统以FPGA作为数字中频处理部分,发射机采用FM调制对信号进行处理,接收机采用数字下变频与欠采样技术,将中频信号降采样后解调,得到原信号。系统采用分模块式设计,对电路各个模块的功能和实现加以说明,设计思路灵活,结构清晰。电路在Protel99中设计完成,并用VerilogHDL语言对数字中频进行编程和程序仿真。系统已经做成实体,可以实现信号的无线发射与接收,达到设计提出的要求。
1