监督学习-线性模型-2. 岭回归&Lasso回归
2024-06-01 20:10:14 263KB 线性回归 监督学习
1
内容概要:该资源介绍了使用机器学习方法对毒蘑菇进行分类的实现。主要包含了逻辑回归、高斯朴素贝叶斯、支持向量机、随机森林、决策树和人工神经网络等六种监督学习模型的应用。 适用人群:对机器学习和分类算法感兴趣的学习者、数据科学家、机器学习工程师等。 使用场景及目标:本资源可用于学习如何使用不同的监督学习模型对毒蘑菇进行分类,帮助用户理解各种模型的原理和应用场景,并能够根据实际需求选择合适的模型进行分类任务。 其他说明:资源中提供了详细的代码示例和实验结果,以及对比不同模型在毒蘑菇分类任务上的性能评估,帮助用户深入理解各个模型的优缺点和适用范围。
2024-05-29 18:49:19 39KB 机器学习 逻辑回归 特征工程
1
监督学习机制下的说话人辨认算法 半监督学习在入侵检测系统中的应用 半监督学习综述 基于半监督学习的眉毛图像分割方法 基于半监督学习的网络流量分类 基于核策略的半监督学习方法 一种基于半监督学习的多模态Web查询精化方法 有关半监督学习的问题及研究
2023-09-14 15:35:21 2.96MB 半监督 监督 部分标记 标记
1
提出一种改进决策1-SVM方法(1-DISVM),并由此构建了基于单类样本训练的1-DISVM多分类模型。1-DISVM是1-SVM方法的改进,通过对决策算法的修正,解决了1-SVM分类精度低的不足,并将其应用于直升机减速器故障识别中。结果表明该方法能够在训练样本数量少、不准确的情况下,自动排除错误样本的干扰,获得很好的分类结果,且具有无监督学习、分类精度高、易于扩展和代价小等优点。
2023-04-11 20:28:15 52KB 工程技术 论文
1
利用python sklearn进行机器学习
2023-04-06 08:41:19 6.07MB 机器学习 python 监督学习 代码
1
空气环境问题越发成为人们关注的焦点.除了工厂排放的各种废气,私家车的普及都导致了当前令人担忧的空气环境状况.国家相关部门也开始加大对空气环境的治理,提出了环境质量网格化监测的相关政策.在此背景下,市场涌现出很多微型监测仪器,但由于自身内部的传感器精准度不够,存在数据偏差的问题.为了解决这一问题,本文通过利用神经网络技术中的长短期记忆网络(Long Short-Term Memory,LSTM)模型结合半监督学习方法,达到提高监测数据的精准度的目的.通过与其它模型进行对比分析,该方法达到了一定的效果.
1
压缩包中包含算法的Python实现代码、测试数据集及运行结果,可供感兴趣的同学参考。因为现在的实现并不能对所有的数据集都得到良好的效果,所以如果哪位同学有更好的想法,希望能不吝赐教。
2023-03-11 00:04:26 190KB 机器学习 聚类算法 无监督学习
1
SimCLR-视觉表示形式对比学习的简单框架 消息! 我们发布了SimCLR的TF2实现(以及TF2中的转换后的检查点),它们位于。 消息! 新增了用于Colabs,请参见。 SimCLR的插图(来自 )。 SimCLRv2的预训练模型 我们在这里开源了总共65个经过预训练的模型,与论文的表1中的模型相对应: 深度 宽度 SK 参数(M) 金融时报(1%) FT(10%) FT(100%) 线性评估 监督下 50 1倍 错误的 24 57.9 68.4 76.3 71.7 76.6 50 1倍 真的 35 64.5 72.1 78.7 74.6 78.5 50 2倍 错误的 94 66.3 73.9 79.1 75.6 77.8 50 2倍 真的 140 70.6 77.0 81.3 77.7 79.3 101 1
1
增长速度 通过有效的锚图正则化可扩展的半监督学习 BibTeX: @article {wang2016scalable, title = {通过有效的锚图正则化可扩展的半监督学习}, 作者= {王蒙,符和富,魏杰和郝,石杰和陶,大成和吴信东}, journal = {IEEE知识和数据工程交易}, 音量= {28}, 数字= {7}, pages = {1864--1877}, 年= {2016}, Publisher = {IEEE}}
2023-03-06 15:45:01 299KB MATLAB
1