电力电子仿真 buck电路闭环仿真,输入电压为50V,采用电压控制控制,电压控制环由运算放大器组成。输出电压经过输出电压采样输入闭环控制器。更改负载保持输出电压不变。更改参考电压可更改输出电压幅值。
2025-11-10 23:46:40 23KB
1
电力行业中,数字孪生(Digital Twin)技术已经成为变电站管理和运维的重要工具。"变电站通用设备模型-800kV断路器-gltf格式-three.js模型-电力数字孪生"是一个针对800kV高压断路器的三维数字化模型,它结合了先进的图形技术和实际电力设备的物理特性和工作原理,为变电站的运行和维护提供直观、精确的可视化解决方案。 800kV断路器是电力系统中关键的设备之一,主要用于切断或闭合高压电路中的大电流,确保电网的安全稳定运行。这种高电压等级的断路器设计和运行需要高度的专业知识和技术,因为它们需要处理极高的电能,并且在故障情况下能够迅速动作,防止电力事故的发生。 gltf(GL Transmission Format)是一种高效、轻量级的3D模型格式,被广泛用于Web上的实时渲染和交互。与传统的3D模型格式如FBX或OBJ相比,gltf具有更小的文件大小和更快的加载速度,适合于网络传输和在线应用。在这个案例中,gltf格式的模型使得800kV断路器能够在Web浏览器上流畅地显示,无需用户下载大型文件,提升了用户体验。 three.js是一个基于WebGL的开源JavaScript库,用于在浏览器中创建三维图形。它提供了丰富的功能,包括场景管理、光照效果、动画处理等,使得开发者能够轻松地构建复杂的3D场景。在电力数字孪生领域,three.js能够帮助工程师们将变电站的设备模型以真实感的三维形式呈现,实现远程监控、故障模拟、预防性维护等功能。 通过这个800kV断路器的three.js模型,操作人员可以在电脑前就能观察到设备的详细结构,理解其工作状态,甚至进行故障预演。例如,可以通过动画模拟断路器的开断过程,分析潜在的问题,提前制定解决方案。此外,模型还可以集成传感器数据,实时反映设备的运行参数,帮助实时监控和诊断。 文件列表中的"1-7QF-T2-GIM01-800kV断路器模型01.bin"和"1-7QF-T2-GIM01-800kV断路器模型01.gltf"分别是断路器模型的二进制数据文件和gltf描述文件。bin文件通常包含模型的几何数据、纹理信息等,而gltf文件则包含了模型的结构信息,如材质、光照、动画等,两者结合使得模型在Web环境中能够完整地展现。 总结来说,"变电站通用设备模型-800kV断路器-gltf格式-three.js模型-电力数字孪生"项目利用了先进的3D建模技术,将800kV断路器的复杂结构和功能以直观、互动的方式呈现,为电力行业的数字化转型提供了有力支持。它不仅可以提升运维效率,减少现场作业的风险,还能通过模拟和预测,优化设备性能,确保电力系统的安全和可靠。
2025-11-10 17:34:09 125KB three.js gltf 3D可视化
1
电力电子技术三级项目大作业,拿来就能用的高分作业。 本项目旨在设计并仿真一个简易的手机充电器系统,利用Simulink平台实现电力电子技术的应用,展现如何通过电力电子转换器实现对手机电池的高效充电。通过这项设计,用户能够深入理解电力电子技术在现代移动设备充电领域中的实际应用,并掌握相关仿真方法与技术。 Simulink作为一种强大的系统建模和仿真工具,在电力电子电路的设计中得到了广泛应用。在本项目中,使用Simulink建模并仿真了一个简易手机充电器电路,该电路采用了DC-DC转换技术,并通过PID控制器调节输出电压与电流,确保充电过程的稳定性和安全性。仿真过程包括电源电压转换、滤波、稳压以及过流保护等功能模块的设计。 简易性与实用性: 本设计为简易充电器系统的实现,适合初学者了解电力电子学基本原理,同时也具备较高的应用价值。 高效的仿真方法: 使用Simulink进行建模与仿真,能够真实还原充电器的工作过程,具有较高的可操作性和灵活性。 安全与稳定性设计: 通过加入保护功能,确保充电过程中设备的安全性,适合实际应用。 通过本设计与仿真,用户不仅可以掌握充电器的设计思路和关键技术,还能
2025-11-08 11:10:12 42KB 电力电子技术 simulink matlab
1
PWM控制下的半桥与全桥LLC谐振变换器的仿真过程,重点探讨了软开关技术和输出电压闭环控制的实现。文中首先简述了LLC谐振变换器的基本概念及其优势,接着逐步讲解了如何使用Matlab/Simulink/PLECS等软件构建模型,包括选择合适的谐振元件参数。随后,文章深入分析了PWM控制策略的作用以及如何通过调整PWM信号的占空比来维持输出电压的稳定性。此外,还特别强调了闭环控制系统的设计,确保输出电压保持在设定范围内,并减少了开关损耗和噪声。最后,通过对仿真结果的分析,验证了所提出的方法的有效性,并对未来的研究方向进行了展望。 适合人群:从事电力电子设计的技术人员、高校相关专业师生、对电力电子技术感兴趣的科研工作者。 使用场景及目标:适用于需要深入了解LLC谐振变换器工作原理和技术细节的人群,帮助他们掌握PWM控制策略、软开关技术和闭环控制的实际应用,从而提高设计能力和解决实际工程问题的能力。 其他说明:本文不仅提供了理论知识,还包括具体的建模和仿真操作指导,有助于读者快速上手实践。
2025-11-07 13:53:50 513KB
1
电力通信网是国家专用通信网之一,是电力系统的重要组成部分,对电网调度自动化、电网运行市场化和电网管理信息化起着基础性支撑作用,确保电网安全、稳定、经济运行。全国电力系统通信网主要以光纤和数字微波传播为主,辅以卫星、电力线载波、电缆、无线电等多种通信方式,业务覆盖语音、数据、远动、继电保护、电力监控、移动通信等众多领域。电力通信网由骨干通信网和终端通信接入网构成,骨干通信网涵盖35千伏及以上电网,包括跨区、区域、省、地市四级通信网络;终端通信接入网则由10千伏和0.4千伏两部分构成。电力通信网的构成要素包括硬件和软件两大部分,硬件包含终端设备、互换系统和传播系统,软件则涉及协议、网络构造、网内信令、技术体制等,实现通信网的智能化管理、控制和维护。电力通信网的基本构成特性包括全程全网、联合作业、协同配合,分级管理原则是统一领导、分级管理,全国电力通信网分为四级。 电力通信网的传播网(通信基础网)是基础设施,由传播介质和传播设备构成,传播介质主要有光纤、无线电和输电线,分别对应于光通信、微波通信和电力线载波通信等方式。业务网构建在传播网上,满足不同业务需求的应用网,包括电话互换网、调度专用数据网、信息网等。继电保护网和电视会议网也是业务网的一部分,但将逐步融入调度专用数据网和信息网。支撑网支持通信网正常运行,主要包括同步系统、网管系统和信令系统等。 电力通信网的产生是为了解决公网发展缓慢和电力部门特殊通信需求的问题,随着电力工业的发展和电力系统需求的不断变化,电力通信网的重要性日益凸显。作为电力工业的重要基础设施,电力通信网正不断进步和发展,采用先进的技术和服务来适应新的挑战。 电力通信网技术的不断进步也对电网运行的效率和安全性提出了新的要求,例如,随着可再生能源的接入和智能电网技术的发展,电力通信网需要能够处理更加复杂和动态的数据通信需求。同时,电力通信网的安全性也面临着来自网络攻击和信息泄露等新的威胁,因此,电力通信网的维护和安全防护技术也是当前和未来研究和发展的重点。此外,随着5G通信技术的应用,电力通信网在实现更快速度、更高容量的通信方面有着巨大的潜力,可以进一步优化电力系统的运行效率和可靠性。 电力通信网的建设和维护不仅需要通信技术的支持,更需要对电网的深刻理解以及对未来电力系统发展趋势的准确预测。只有这样,电力通信网才能不断适应新的技术进步和电力市场需求,持续提供高效率、高稳定性的电力服务,为国民经济的持续发展提供有力支撑。电力通信网的持续发展,也将进一步推动电力系统自动化、市场化、信息化水平的提升,为实现更加安全、稳定、经济、智能的电网运行提供坚实的技术保障。
2025-11-05 10:59:18 3.1MB
1
内容概要:本文档详细介绍了并联发电机组连接到低压配电网络(LV)的要求。涵盖了技术评估、系统影响评估(如电能质量、局部电压升高、线路保护操作的影响)、孤岛运行、四象限整流器等方面的内容。同时定义了相关术语,包括并网方向、接点位置、并行运行条件、临时并行运行等。此外,还规定了发电模块、发电站、发电单元、微小型发电装置等的定义和技术规范。 适合人群:电气工程师、电力行业技术人员、标准制定机构相关人员。 使用场景及目标:帮助电力公司和相关企业确保发电机组与低压配电网络的安全、可靠并联运行,符合欧盟标准化要求。适用于发电站规划、建设和维护过程中涉及的相关技术和安全规范。
2025-11-05 09:08:04 1.79MB 电力工程 配电网络 发电机组 并联运行
1
内容概要:本文详细介绍了LCC-LCC无线充电系统的恒流/恒压闭环移相控制仿真模型。该系统基于LCC-LCC谐振补偿拓扑,利用Simulink进行建模和仿真。系统输入直流电压为350V,负载为可切换电阻(50-70Ω),最大功率达3.4kW,最高效率为93.6%。文中重点讨论了闭环PI控制策略,通过PI控制器调整逆变电路的移相占空比,确保输出电压和电流的精确控制。此外,还设定了恒压值350V和恒流值7A,使系统能在不同负载条件下保持稳定输出。文中提供了部分MATLAB代码片段,展示PI控制器的工作原理及其在仿真中的应用。 适合人群:从事电力电子、控制系统设计的研究人员和技术人员,以及对无线充电技术感兴趣的工程专业学生。 使用场景及目标:适用于需要深入了解LCC-LCC无线充电系统工作原理和控制策略的研究项目,旨在提高无线充电系统的效率和稳定性。 其他说明:通过Simulink仿真模型,可以直观地了解无线充电系统的运行过程和性能表现,有助于进一步优化设计方案。
2025-11-04 17:02:03 755KB 电力电子 Simulink 无线充电 PI控制
1
内容概要:本文详细介绍了基于混合整数线性规划(MILP)和双延迟深度确定性策略梯度(TD3)的用户侧储能系统优化运行策略。该策略旨在解决深度强化学习在储能控制中难以严格满足运行约束的问题。通过MILP确保动作的可行性,利用TD3进行优化决策,研究建立了考虑电池退化成本的运行优化模型。文章提供了详细的代码实现,包括环境建模、MILP求解器、TD3算法、增强型MILP求解器、完整训练流程、性能对比分析以及实时调度测试。此外,还深入分析了核心创新点,如约束处理机制和成本优化,并展示了算法的完整实现过程。 适合人群:具备一定编程基础,对储能系统优化、深度强化学习和混合整数线性规划感兴趣的科研人员和工程师。 使用场景及目标:①研究和开发用户侧储能系统的优化运行策略;②理解和应用MILP和TD3结合的技术来提升储能系统的运行效率和降低成本;③评估不同算法(如TD3和MILP-TD3)在储能控制中的性能差异。 其他说明:本文不仅提供了理论分析,还给出了详细的代码实现,便于读者复现实验结果。文中强调了关键实现细节,如电池退化成本模型、严格的约束处理机制以及完整的性能评估指标。通过这些内容,读者可以深入了解并实践基于MILP-TD3的储能系统优化方法。
2025-11-03 18:29:56 58KB 深度强化学习 储能系统 优化调度
1
电力系统时间同步系统规范是一个专门针对电力系统中时间同步系统制定的标准,它详细规定了时间同步系统的统一接口、系统组成以及时间同步的准确度要求。这个规范的目的是确保电力系统中的时间同步系统能够与各类被对时设备有效地进行互联,并且实现不同厂商之间时间同步装置的兼容性,以支持电力系统的网络化和自动化。 在深入探讨这一规范之前,我们需要了解几个基础知识点: 1. 时间同步系统的基本概念:时间同步系统是指在一个系统或网络中,多个设备能够保持统一的时间基准。这样的系统在电力系统中尤为重要,因为它有助于确保系统操作的同步性、减少故障概率,并提高电网的稳定性和可靠性。 2. 时间同步的重要性:在电力系统中,时间同步对于故障检测、隔离和恢复(故障诊断)、负载管理、需求响应和自动化控制等应用至关重要。它确保不同地理位置的事件可以被准确记录和同步分析,这对于保障整个电网的安全和稳定运行至关重要。 3. 时间同步技术:目前广泛使用的时间同步技术包括但不限于网络时间协议(NTP)、精确时间协议(PTP,IEEE 1588标准)、全球定位系统(GPS)和伽利略系统等。这些技术通过不同的媒介和算法来实现精确的时间同步。 接下来,我们将详细介绍本标准中所包含的关键知识点: 1. 统一接口规范:这是时间同步系统的核心内容之一。统一接口包括物理接口和数据接口两个方面。物理接口标准涉及连接器的类型、电缆规格以及电气特性等;数据接口标准则包括数据传输速率、帧结构、通信协议和封装方式等。统一接口的定义有利于不同制造商的设备间实现即插即用的互操作性。 2. 系统组成:规范会详细描述时间同步系统的构成,这可能包括时间同步服务器、时间源、传输媒介和授时终端等。每个组件的功能和性能要求都会在标准中得到明确。 3. 时间同步的准确度:准确度要求是时间同步系统中的核心指标之一,它直接影响到电网自动化控制和管理的效率和准确性。标准中会规定不同类型设备的时间同步误差范围,比如主站、子站和终端设备在正常运行条件下的时间同步误差上限。 4. 互联要求:规范将详细描述不同设备间互联的要求,比如对于对时信号的兼容性、对时精度要求、信号传输的冗余性和可靠性要求等。这确保了即便在复杂多变的电网环境中,时间同步系统仍能保持高效稳定的工作状态。 5. 安全和可靠性:在电力系统时间同步中,安全性同样重要。规范中将包含确保时间同步系统的安全性措施,例如数据加密、身份验证机制和故障恢复策略,以及对可能的网络攻击和故障模式的防护措施。 6. 兼容性和扩展性:在电力系统时间同步系统规范中,兼容性和扩展性也是被强调的重要方面。规范会提供机制和方法,以保证新一代时间同步装置能够与现有的系统兼容,同时允许系统的平滑扩展。 7. 定时和监控:时间同步系统还需要具备定时和监控功能,包括但不限于同步状态的监测、同步质量的评估、以及故障和异常的报警等。 8. 文档和测试:规范中也会详细规定相关技术文档的要求,以及必须进行的测试和验证,确保所有要求都能得到实际满足。 这些知识点的综合运用能够为电力系统提供一个精确、可靠和安全的时间同步解决方案,从而提升整个电力系统的性能和管理水平。在具体实施时,标准的制定和应用将需要综合考虑不同制造商的技术和产品特性,以及与现有系统的兼容性问题。
2025-11-02 14:40:38 949KB 电力系统
1
电力系统时间同步系统是电力行业中至关重要的组成部分,它确保了所有设备和系统操作的精确时序,从而保证电力网络的安全、稳定和高效运行。本文将深入探讨标题为“电力系统时间同步系统行业标准”的主题,结合描述中的内容,我们将详细阐述时间同步在电力行业的应用、相关标准以及DLT 1100.1-2009标准的具体内容。 时间同步对于电力系统的重要性主要体现在以下几个方面: 1. **故障检测与分析**:精确的时间戳对于电力系统故障的快速定位和分析至关重要,帮助运维人员迅速识别问题并采取应对措施。 2. **自动化控制**:现代电力系统广泛采用自动化设备,如智能变电站和分布式能源资源,这些设备需要精确的时间信号来协调操作,确保电网的稳定运行。 3. **电力交易与调度**:电力市场的交易和调度依赖于精确的时间信息,确保电力的供需平衡,避免因时间不准确导致的市场混乱。 4. **保护系统**:电力系统的继电保护装置需要精确时间信息,以在发生故障时快速隔离故障区域,防止事故扩大。 5. **通信系统**:电力通信网络中的信息交换需要时间同步,确保数据的正确对接和处理。 “电力系统时间同步行业标准”定义了电力行业时间同步系统的构成、功能和性能要求。系统通常由时间服务器、时间同步设备和客户端组成,其中时间服务器接收来自外部的时间源(如GPS或北斗卫星)的信号,然后通过网络向其他设备提供同步时间。 DLT 1100.1-2009《电力系统的时间同步系统 第1部分:技术规范》是电力行业的一个重要标准,其主要内容可能包括: 1. **时间同步协议**:规定了电力系统中使用的各种时间同步协议,如IEEE 1588精密时间协议(PTP)和网络时间协议(NTP)。 2. **时间源和时间服务器**:明确了时间源的类型和选择,以及时间服务器的技术指标和性能要求。 3. **系统架构**:描述了时间同步系统的基本架构,包括主时钟、从时钟、传输路径等组成部分。 4. **精度和稳定性**:规定了系统应达到的时间精度和长期稳定性,以满足不同层次的电力系统需求。 5. **接口与兼容性**:定义了系统与其他设备、系统之间的接口标准,确保兼容性和互操作性。 6. **测试与评估**:提供了系统的测试方法和评估准则,以验证其符合标准要求。 7. **安全与可靠性**:强调了时间同步系统在电力网络安全和可靠性方面的要求,包括防篡改、抗干扰和故障恢复机制。 8. **维护与管理**:提出了系统日常维护和管理的指导原则,确保其长期稳定运行。 电力系统时间同步系统行业标准对于规范电力行业的运营和提高电网的智能化水平起着关键作用。DLT 1100.1-2009标准作为这一领域的技术规范,为电力企业提供了实现高精度时间同步的依据和指南。
2025-11-02 14:40:03 876KB 时间同步
1