在本研究中,提出了一个基于长短期记忆网络(LSTM)和Transformer模型融合的新型通信噪音时序预测模型。该模型的提出主要是为了解决通信系统中噪音预测的难题,通过将两种深度学习架构的优势进行整合,旨在提升噪音时序数据的预测准确度。 LSTM网络以其在处理时序数据方面的出色性能而广受欢迎。LSTM能够捕捉序列数据中的长期依赖关系,这对于噪音预测来说至关重要,因为通信信号的噪音往往具有复杂且连续的时间特性。LSTM通过其特有的门控机制(输入门、遗忘门和输出门)有效地解决了传统循环神经网络(RNN)在长序列学习上的梯度消失和梯度爆炸问题,进而能够更加精确地建模和预测噪音变化。 而Transformer模型则代表了另一种处理序列数据的先进技术。它首次由Vaswani等人提出,完全摒弃了传统的递归结构,转而采用自注意力(self-attention)机制来处理序列数据。这种机制使得模型可以并行处理序列中的任意两个位置,极大提升了计算效率,并且增强了对序列中全局依赖关系的捕捉能力。Transformer的这种处理方式,为噪音时序数据的特征提取提供了新的可能性,尤其是对于那些需要理解全局上下文信息的复杂噪声场景。 研究将LSTM的时序依赖捕捉能力和Transformer的全局特征提取能力进行了有效的融合。在这种融合架构下,模型不仅能够保持对序列长期依赖的学习,还能够并行地处理和提取序列中的全局特征,从而提高了噪音预测模型的鲁棒性和准确性。在进行多模型性能评估时,该融合模型展现出优异的性能,明显优于单独使用LSTM或Transformer模型的预测结果。 此外,研究还涉及了多模型性能评估,对融合模型和其他主流的深度学习模型进行了比较分析。通过一系列实验验证了融合模型在各种评估指标上的优越性,如均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)等。这些评估结果进一步证实了模型融合策略的有效性,为通信系统中的噪音预测问题提供了一个可靠的技术方案。 在通信信号处理领域,噪音是一个长期存在的挑战,它会严重影响信号的传输质量和通信的可靠性。准确预测通信信号中的噪音变化对于提前采取措施减轻干扰具有重要意义。本研究提出的基于LSTM与Transformer融合架构的通信噪音时序预测模型,在这一领域展示了巨大的潜力和应用价值。 本研究工作不仅在技术上实现了LSTM和Transformer的深度融合,而且在实际应用中展示了通过融合模型优化提升通信系统性能的可能。这项研究工作为通信噪音预测问题提供了一个新颖的解决方案,并且对于其他需要处理复杂时序数据预测任务的领域也具有重要的参考价值。
2025-11-04 18:56:10 64KB
1
在无线通信安全领域,信道状态信息(CSI)分析与深度学习模型训练的结合为网络安全性带来了新的研究方向。当前,基于WiFi信号的非接触式键盘输入监测系统,以及用于网络安全审计与隐私保护的击键特征提取算法研究,正在成为热点。这些研究主要关注如何通过深度学习技术,实现对通过无线网络传输的数据包进行分析,并从中提取出击键行为的特征信息。 非接触式键盘输入监测系统能够通过WiFi信号的细微变化,捕捉用户在键盘上的敲击动作。由于每个人敲击键盘的方式具有唯一性,因此可以将这些信息作为区分不同用户击键行为的依据。此外,深度学习模型被用来训练系统,以识别和分类这些击键行为,提高系统的精确度和效率。 在击键行为的识别与分类过程中,深度学习模型能够处理来自信道状态信息的海量数据,并通过学习大量的击键样本数据,自动识别不同用户的击键模式。通过这种方式,系统不仅能够监控键盘输入活动,还能通过分析和比较击键特征,准确地识别出不同的用户。 该技术在网络安全审计和隐私保护方面有着重要应用。在审计过程中,该系统可以作为监控工具,及时发现非授权的键盘活动,进而采取措施保护敏感数据不被非法访问。同时,对于个人隐私保护来说,该技术能够阻止不法分子通过键盘记录器等方式非法获取用户的击键信息。 除了提供网络安全审计与隐私保护功能外,这些研究还促进了高精度击键位的实现。通过深度学习模型的训练,系统能够精确地定位每个击键动作,为未来提升无线网络安全和隐私保护水平提供了技术保障。 这些研究工作为无线通信安全领域的专家和技术人员提供了新的视角和解决方案。随着技术的不断进步和深度学习模型的持续优化,未来的网络安全和隐私保护技术将更加成熟和高效。
2025-10-25 20:52:23 7.59MB python
1
在计算机视觉和图像处理领域,特征提取是至关重要的一个环节,其目的是通过计算机对图像信息进行提取,判定图像中的每个点是否属于某个特征。彩色图像特征提取的研究通常包括图像的预处理、图像信息分析以及图像特征的提取等步骤。 在预处理阶段,可能会涉及图像的去噪、灰度化、归一化等操作,以便对图像进行初步的清理和标准化,从而减少后续处理的难度。经过预处理的图像会为特征提取提供更清晰、更一致的数据基础。 在图像信息分析阶段,研究者会详细分析图像的各种特征,这包括颜色特征、纹理特征、轮廓特征等。颜色特征提取可能涉及到颜色空间的转换(如从RGB到HSV)、颜色直方图的构建、颜色矩的计算等。纹理特征提取则可能关注图像纹理的粗糙度、方向性、对比度等属性,常用的方法有灰度共生矩阵(GLCM)和小波变换。轮廓特征的提取则关注于识别和描述图像中物体的边缘和轮廓线。 MATLAB作为一种高性能的数值计算和可视化软件,被广泛应用于图像处理领域。MATLAB提供丰富的图像处理工具箱,使得彩色图像特征提取的实现变得简单便捷。通过调用MATLAB中的函数和算法,研究者能够有效地提取所需的图像特征,例如颜色特征、纹理特征和轮廓特征等。 在图像特征提取的具体方法中,边缘检测、阈值分割技术和区域增长是三种常见的图像分割方法。边缘检测算法如Roberts算子、Prewitt算子和Canny算子各有特点和适用场景,其中Canny算子因其提出的三个准则(噪声抑制、边缘定位、边缘单一边界)而得到广泛应用。阈值分割技术则依赖于选取适当的阈值来区分目标与背景,对于灰度分布差异较大的图像分割效果显著。区域增长方法则是根据像素间的相似性将像素组合成新的区域,它适用于纹理特征丰富或者目标区域具有明显特征的情况。 文章还分析了图像分割技术的研究方向,指出了当前技术的不足和未来的改进空间。例如,对于复杂背景下或者含有噪声的图像,如何提高分割的准确性、如何处理图像的多模态特征等都是当前研究的热点问题。 此外,随着深度学习技术的发展,基于深度学习的图像特征提取和图像分割方法逐渐成为研究的前沿方向。深度学习方法通过学习大量的样本,可以自动提取图像的高层次特征,并用于复杂的图像处理任务,如图像分割、目标检测等。 彩色图像特征提取是图像处理中的基础和核心环节,其研究成果在图像检索、目标识别、图像分类等领域具有广泛的应用前景。通过MATLAB等软件的辅助,彩色图像特征提取的研究变得更加高效和精确。
2025-10-17 05:35:33 3.58MB
1
计算机视觉作为人工智能领域的核心技术之一,其核心在于如何从原始图像数据中提取出有意义的信息,以便于机器能够更好地理解和处理视觉世界。特征提取技术是实现这一目标的重要步骤,它通过分析图像中的局部区域或整体结构来提取出对后续处理有用的数据特征。图像处理方法则是对图像进行一系列处理操作,以满足特定的应用需求。 在特征提取领域,常见的技术包括但不限于边缘检测、角点检测、纹理分析和形状描述。边缘检测通过识别图像中亮度变化剧烈的点来提取边缘,而角点检测则专注于图像中具有特定方向变化的特征点。纹理分析关注的是图像的表面特性,通过分析像素间的相关性来表征图像的纹理特征。形状描述则致力于从图像中识别和描述物体的形状。 图像处理方法则更为多样,包括但不限于图像滤波、图像增强、图像分割、图像融合等。图像滤波的目的是去除图像噪声或突出特定的图像特征。图像增强则着重于改善图像的视觉效果,使之更适合人的观察或机器分析。图像分割是将图像分割成多个部分或对象,每个部分在某种特征上保持一致性。图像融合则是将来自不同传感器或同一传感器在不同时间拍摄的图像进行合并,以获得更全面或更清晰的信息。 在实际应用中,特征提取技术和图像处理方法需要根据具体的应用场景进行选择和调整。例如,在自动驾驶系统中,车辆和行人检测需要快速准确地从复杂背景中提取出目标特征,并通过图像分割技术将其与背景分离。在医疗影像分析中,图像处理方法如滤波和增强可以提高病变区域的可视化效果,便于医生进行诊断。 计算机视觉的研究还涉及到机器学习和深度学习方法,尤其是卷积神经网络(CNN)在特征提取和图像处理中的应用取得了显著的成果。CNN能够在无需人工设计特征的情况下,自动从大量数据中学习到有效的特征表示,极大地推动了计算机视觉技术的发展。 此外,开源社区的活跃也为计算机视觉技术的发展提供了丰富资源。研究人员和开发者可以访问大量的开源工具和库,如OpenCV、TensorFlow、PyTorch等,这些工具为特征提取和图像处理提供了强大的算法支持,并且可以通过社区贡献不断完善和优化。 在探讨这些技术的同时,研究人员还需考虑到实际应用中的一些挑战,如计算效率、实时性能、不同环境下的适应性以及数据的隐私保护等。随着技术的不断进步,未来计算机视觉将在更多的领域发挥作用,从安防监控到工业检测,从虚拟现实到远程医疗,其应用前景广阔。 总结而言,计算机视觉中的特征提取技术和图像处理方法是实现智能视觉应用的基础,它们的发展和创新对于推动相关领域的科技进步和应用拓展具有重要意义。通过不断的研究和技术进步,我们期待计算机视觉技术在未来能够更好地服务于人类社会,提高人们的生活质量。
2025-10-17 04:54:19 300B 计算机视觉 图像处理
1
《MATLAB实现的指纹特征提取技术详解》 指纹识别作为一种生物特征识别技术,在身份认证、安全防护等领域有着广泛的应用。本文将围绕标题“指纹特征提取源码”进行深入解析,结合MATLAB环境,探讨如何利用GUI界面进行有效的指纹特征提取。 在指纹识别系统中,特征提取是关键步骤,它涉及到指纹的预处理、细节提取和模板生成等过程。MATLAB作为一种强大的数值计算和可视化工具,被广泛用于科研和工程实践中,特别是在图像处理和模式识别领域。 该源码由MATLAB2014a编写,包含了图形用户界面(GUI),这意味着用户可以通过友好的交互方式来操作和观察指纹特征提取的过程。GUI设计使非编程背景的用户也能轻松上手,提高了系统的易用性。 文件列表中的"4.bmp"、"5.bmp"、"2.bmp"、"3.bmp"可能是用于测试和展示的指纹图像,它们通常以位图(BMP)格式存储,便于MATLAB读取和处理。"fingerprint.fig"是GUI的设计文件,保存了窗口布局、控件设置等信息。"fingerprint.m"很可能是主程序文件,负责初始化GUI和控制流程。"fenge.m"可能涉及图像分割,"freqest.m"可能与频率分析相关,"erzhihua.m"可能用于二值化处理,而"ridgeorient.m"则可能用于提取指纹脊线的方向信息。 指纹特征提取通常包括以下步骤: 1. 图像预处理:包括图像增强,旨在提高指纹的对比度和清晰度,消除噪声。可能运用到的技术有直方图均衡化、滤波器等。 2. 图像二值化:将灰度图像转换为黑白图像,以便于后续的特征提取。"erzhihua.m"可能就是执行这个任务。 3. 去除噪声:如毛刺点、断点等,这通常通过平滑滤波或形态学操作完成。 4. 脊线检测:找出指纹的脊线,这是特征提取的基础。"ridgeorient.m"可能实现了这一功能,通过计算像素梯度方向来确定脊线方向。 5. 关键点检测:找到分叉点和终结点,这些点提供了指纹的唯一标识。 6. 模板生成:将提取的特征编码成模板,用于后续的匹配过程。 7. GUI显示:在"freqest.m"和"fenge.m"中,可能包含了图像的频率分析和分割显示,使用户可以直观地看到处理过程和结果。 该MATLAB源码提供了一个完整的指纹特征提取解决方案,从图像处理到特征提取,再到GUI界面的呈现,涵盖了指纹识别技术的核心环节。对于学习和研究指纹识别的人员来说,这是一个宝贵的实践资源。通过理解和运用这些代码,可以深入理解指纹识别的原理和技术,同时也能够提升MATLAB编程和图像处理的能力。
2025-10-15 11:35:10 223KB MATLAB 指纹特征提取 GUI
1
2025电赛预测无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip 随着无线通信技术的迅速发展,无线网络的安全问题日益凸显。为了有效地保护网络安全,维护用户隐私,本研究聚焦于无线通信安全领域中的几个关键问题:信道状态信息分析、深度学习模型训练、击键行为识别与分类,以及基于WiFi信号的非接触式键盘输入监测系统。这些问题的研究与解决,对提升网络安全审计的准确性和隐私保护水平具有重要的现实意义。 信道状态信息(Channel State Information, CSI)是无线网络中不可或缺的一部分,它反映了无线信号在传播过程中的衰落特性。通过对CSI的深入分析,可以实现对无线信道状况的精确掌握,这对于无线通信的安全性至关重要。研究者利用这一特性,通过获取和分析无线信号的CSI信息,来检测和预防潜在的安全威胁。 深度学习模型训练在无线通信安全中起到了关键作用。基于深度学习的算法能够从海量的无线信号数据中学习并提取有用的特征,对于实现复杂的无线安全监测任务具有天然的优势。训练出的深度学习模型能够对无线环境中的各种异常行为进行有效识别,从而在源头上预防安全事件的发生。 击键行为识别与分类是本研究的另一个重点。通过分析无线信号与键盘输入活动之间的关系,研究者开发了基于WiFi信号的非接触式键盘输入监测系统。该系统能够通过分析无线信号的变化,识别出用户在键盘上的击键行为,并将其转换为可识别的文本信息。这不仅能够实现对键盘输入的实时监测,还能有效地防止键盘输入过程中的隐私泄露。 基于WiFi信号的非接触式键盘输入监测系统,为网络安全审计与隐私保护提供了新的途径。通过这一系统,安全审计人员可以对用户的键盘输入进行非侵入式的监测,从而对可能的安全威胁做出快速反应。同时,对于个人隐私保护而言,这一技术可以辅助用户及时发现并阻止未经授权的键盘监控行为,从而保障用户的隐私安全。 为了实现高精度的击键位识别,研究者开发了专门的击键特征提取算法。这些算法通过对WiFi信号变化的深入分析,能够有效地从信号中提取出与键盘击键活动相关的特征,进而实现对击键位置的高精度识别。这一成果不仅提高了无线监测系统的性能,也为相关的安全技术研究提供了新的思路。 本研究通过对无线通信安全问题的多角度探讨和技术创新,为网络安全审计与隐私保护提供了有力的工具和方法。其研究成果不仅能够提高无线网络安全的防护能力,还能够在保护个人隐私方面发挥重要作用,具有广阔的应用前景。
2025-10-11 11:54:30 7.59MB python
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1
特征提取与图像处理是计算机视觉领域中的核心环节,它涉及到如何从原始的图像数据中抽取有意义的、可以用于后续分析和识别的特征。在第二版的《特征提取与图像处理》一书中,作者Mark S.Nixon和Alberto S.Aguado深入浅出地探讨了这一主题,由实英和杨高波进行中文翻译,使得国内读者也能轻松理解这些高级概念。 特征提取是图像分析的第一步,其目标是从复杂的像素阵列中提取出能够表征图像内容的关键信息。这通常包括边缘、角点、斑点、纹理等。例如,Canny边缘检测算法是一种经典的边缘提取方法,它通过多级滤波和阈值处理找到图像的显著边缘。角点检测如Harris角点检测和Shi-Tomasi角点检测则更注重于定位图像中稳定的几何结构。 图像处理则是特征提取的基础,包括预处理、增强和降噪等步骤。预处理可能包括灰度化、直方图均衡化,以提高图像的对比度和可视性。降噪方法如中值滤波和高斯滤波能有效去除椒盐噪声或高斯噪声。图像增强则通过拉普拉斯算子、Prewitt算子等来突出特定的图像特征。 在第二版中,作者可能会更新一些现代的特征表示方法,如SIFT(尺度不变特征变换)、SURF(加速稳健特征)和HOG(方向梯度直方图)。这些特征不仅具有尺度和旋转不变性,而且在物体识别和场景理解中表现出色。此外,深度学习的崛起也引入了新的特征提取手段,如卷积神经网络(CNN)的特征层,它们可以从大规模图像数据中自动学习到多层次的抽象特征。 特征匹配是图像处理中的另一关键环节,它涉及如何将一个图像的特征与另一个图像的特征进行对应。在第二版中,可能会介绍各种匹配算法,如Brute-Force匹配、FLANN(快速最近邻搜索)以及基于描述子相似度的匹配策略。 除此之外,书中可能还会涵盖图像金字塔、模板匹配、光流估计、立体视觉等话题,这些都是理解和应用图像处理技术的重要组成部分。在实际应用中,这些理论和技术广泛应用于自动驾驶、无人机导航、医学图像分析、安防监控等领域。 总结来说,《特征提取与图像处理(2版)》是一本全面介绍图像处理和特征提取的权威著作,它涵盖了从基础理论到最新进展的广泛内容,对于想要深入理解和应用这一领域的读者来说,是一本不可或缺的参考书。通过阅读这本书,读者不仅可以掌握经典的方法,还能了解到当前领域的前沿动态。
2025-09-27 15:03:52 42.09MB 特征提取 图像处理
1
基于一维CNN的轴承故障诊断迁移学习代码复现:从源域到目标域的特征提取与分布对齐实践,基于迁移学习的轴承故障诊断代码复现:一维CNN特征提取与JDA联合对齐的实现过程,top一区轴承诊断迁移学习代码复现 故障诊断代码 复现 首先使用一维的cnn对源域和目标域进行特征提取,域适应阶段:将源域和目标域作为cnn的输入得到特征,然后进行边缘概率分布对齐和条件概率分布对齐,也就是进行JDA联合对齐。 此域适应方法特别适合初学者了解迁移学习的基础知识,特别推荐,学生问价有优惠 ●数据预处理:1维数据 ●网络模型:1D-CNN-MMD-Coral ●数据集:西储大学CWRU ●准确率:99% ●网络框架:pytorch ●结果输出:损失曲线图、准确率曲线图、混淆矩阵、tsne图 ●使用对象:初学者 ,核心关键词: 一区轴承诊断; 迁移学习; 代码复现; 特征提取; 域适应; JDA联合对齐; 数据预处理; 1D-CNN-MMD-Coral; 西储大学CWRU数据集; 准确率; pytorch框架; 结果输出图示; 初学者。,复现一维CNN迁移学习轴承故障诊断代码:从基础到高级的深度学习之旅
2025-09-23 13:53:02 1.81MB
1
搜索引擎基于CASME2数据集训练的微表情识别系统_支持摄像头实时检测和图片视频分析_包含面部微表情特征提取与分类算法_采用深度学习框架TensorFlow和Keras实现_集成VGG16.zip
2025-09-21 13:59:54 60.79MB python
1