内容概要:本文介绍了一种改进的U-Net神经网络架构——UNetWithInceptionCBAM。该模型融合了Inception模块和CBAM(通道注意力机制和空间注意力机制),增强了对图像特征的捕捉能力。具体来说,Inception模块通过多尺度卷积提取不同尺度的特征,而CBAM则通过对通道和空间维度进行加权,突出重要特征并抑制不重要的特征。网络由编码器(下采样路径)和解码器(上采样路径)组成,每个阶段都包含了DoubleConv或InceptionModule,并应用CBAM进行特征增强。最终通过OutConv输出预测结果。; 适合人群:具备深度学习基础知识,尤其是熟悉PyTorch框架和卷积神经网络的科研人员和工程师。; 使用场景及目标:①医学影像分割任务,如CT、MRI等图像的病变区域检测;②遥感图像处理,如土地覆盖分类、目标检测等;③自然图像分割,如自动驾驶中的道路分割、行人检测等。; 阅读建议:本文提供了详细的代码实现,建议读者在理解U-Net基本原理的基础上,逐步研究Inception模块和CBAM的作用,结合实际数据集进行实验,观察不同组件对模型性能的影响。同时,可以尝试调整参数(如reduction_ratio、kernel_size等),以优化模型效果。
2025-10-22 12:36:03 7KB PyTorch UNet CBAM 深度学习
1
本文提出一种基于相位注意力Mask R-CNN的多期相CT图像肝肿瘤自动检测与分割方法。通过引入注意力机制,网络在不同尺度上选择性地提取非增强期、动脉期和门静脉期的特征,有效融合多相信息,提升检测与分割精度。相比传统单相或三通道拼接方法,该方法将Dice值从0.66提升至0.77,显著改善了对复杂肝肿瘤的识别能力。实验基于521例训练数据和143例测试数据,涵盖囊肿、肝细胞癌、血管瘤等多种病灶类型。研究验证了注意力机制在医学图像多相分析中的有效性,为计算机辅助诊断提供高精度预处理手段。未来将优化计算效率,推动临床应用。
2025-10-09 18:51:55 7.13MB 医学影像 深度学习 肿瘤分割
1
内容概要:本文介绍了基于集成注意力CNN、BiGRU和BiLSTM网络的三路并行分类预测模型,旨在提升故障诊断的准确性。模型利用CNN处理图像数据,BiGRU和BiLSTM处理序列数据,通过注意力机制整合多模态数据,从而提高分类预测性能。文中详细描述了模型架构、数据集格式、训练与测试方法以及测试结果。此外,还提供了技术支持和售后服务,确保用户能够顺利使用模型。 适合人群:从事故障诊断研究的技术人员、工业自动化领域的工程师、机器学习爱好者。 使用场景及目标:① 提升设备故障诊断的准确性和效率;② 预防意外事故发生,保障设备安全运行;③ 使用提供的测试数据进行模型训练和评估。 其他说明:模型已在MATLAB 2024a上成功测试,但用户需按指定格式准备数据集。技术支持响应时间为2小时以内,程序类商品不退换。
2025-09-17 15:08:44 1.5MB
1
内容概要:本文介绍了如何利用Matlab编写基于LSTM(长短期记忆网络)和多头注意力机制的数据分类预测模型。该模型特别适用于处理序列数据中的长距离依赖关系,通过引入自注意力机制提高模型性能。文中提供了完整的代码框架,涵盖从数据加载到预处理、模型构建、训练直至最终评估的所有关键环节,并附有详细的中文注释,确保初学者也能轻松上手。此外,还展示了多种可视化图表,如分类效果、迭代优化、混淆矩阵以及ROC曲线等,帮助用户直观地理解和验证模型的表现。 适合人群:面向初次接触深度学习领域的研究人员和技术爱好者,尤其是那些希望通过简单易懂的方式快速掌握LSTM及其变体(如BiLSTM、GRU)和多头注意力机制的应用的人群。 使用场景及目标:① 对于想要探索时间序列数据分析的新手来说,这是一个理想的起点;② 提供了一个灵活的基础架构,允许用户根据自己的具体任务需求调整模型配置,无论是分类还是回归问题都能胜任;③ 借助提供的测试数据集,用户可以在不修改代码的情况下立即开始实验,从而加速研究进程。 其他说明:为了使代码更加通用,作者特意设计了便于替换数据集的功能,同时保持了较高的代码质量和可读性。然而,某些高级特性(如ROC曲线绘制)可能需要额外安装特定版本的Matlab或其他第三方库才能完全实现。
2025-08-08 23:22:44 1.34MB
1
内容概要:本文介绍了基于蜣螂优化算法(DBO)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量时序预测项目。该项目旨在提升多变量时序预测的准确性,通过融合CNN提取局部时空特征、BiLSTM捕捉双向长短期依赖、注意力机制动态加权关键时间点和特征,以及DBO算法智能优化模型参数,解决传统方法难以捕获长短期依赖和多变量非线性交互的问题。项目解决了多变量时序数据的高维复杂性、模型参数难以调优、长期依赖难以捕获、过拟合与泛化能力不足、训练时间长、数据噪声及异常值影响预测稳定性、复杂模型可解释性不足等挑战。模型架构包括输入层、卷积层、双向长短期记忆层(BiLSTM)、注意力机制层和输出层,参数优化由DBO负责。; 适合人群:对深度学习、时序数据分析、群体智能优化算法感兴趣的科研人员、工程师及研究生。; 使用场景及目标:①提升多变量时序预测准确性,满足实际应用对预测精度的高要求;②实现模型参数的智能优化,减少人工调参的工作量和盲目性;③解决时序数据的非线性和动态变化问题,适应真实场景中的时变特性;④推动群体智能优化算法在深度学习中的应用,探索新型优化算法与深度学习结合的可行路径。; 阅读建议:本文涉及多变量时序预测的理论背景、模型架构及其实现细节,建议读者在阅读过程中结合MATLAB代码示例进行实践,深入理解各个模块的作用及优化策略。
2025-08-05 21:53:24 31KB 深度学习 时序预测
1
内容概要:本文详细介绍了UResNet模型的构建与实现。UResNet是一种结合了ResNet和UNet结构的深度学习模型,主要用于图像分割任务。该模型由多个模块组成,包括上采样模块(Up)、基础块(BasicBlock)、瓶颈块(BottleNeck)、VGG块(VGGBlock)以及可选的膨胀大核注意力模块(DLKA)。DLKA模块通过大核分支、小核分支和通道注意力机制来增强特征表示能力。UResNet的主干部分采用ResNet风格的残差连接,并在编码器-解码器架构中引入跳跃连接,从而有效融合多尺度信息。最后通过卷积层输出分类结果。; 适合人群:具备一定深度学习基础,特别是对卷积神经网络有一定了解的研发人员或学生。; 使用场景及目标:①研究和开发医学影像、遥感图像等领域的图像分割应用;②探索基于ResNet和UNet架构改进的新型网络设计;③理解DLKA模块的工作原理及其在提升模型性能方面的作用。; 阅读建议:由于该模型涉及较多的PyTorch代码实现细节,建议读者首先熟悉PyTorch框架的基本用法,同时关注各组件的功能及其之间的联系,在实践中逐步掌握整个网络的设计思路。此外,对于DLKA模块的理解可以帮助读者更好地优化模型性能。
1
内容概要:本文介绍了基于贝叶斯优化算法(BO)优化卷积双向长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例。该项目旨在解决传统方法在多维度数据分类中的局限性,通过结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和多头注意力机制,有效捕捉数据中的空间和时序特征。贝叶斯优化算法用于调整超参数,提升模型性能。项目通过多特征融合、贝叶斯优化的高计算开销、过拟合问题等多个方面的挑战与解决方案,展示了模型在医疗诊断、金融风控、智能交通、智能家居和自动驾驶等领域的广泛应用潜力。 适合人群:对深度学习、贝叶斯优化、多特征分类感兴趣的科研人员、数据科学家以及有一定编程基础的研发人员。 使用场景及目标:①提高多特征分类模型的准确性,特别是处理复杂的时间序列数据;②提升模型对时序特征的学习能力,增强模型的可解释性;③降低模型调优的复杂度,应对大规模数据的挑战;④推动跨领域的技术融合,为其他研究者提供新的思路和技术支持。 其他说明:项目代码示例展示了如何使用Python和TensorFlow构建卷积双向长短期记忆神经网络融合多头注意力机制的模型,并通过贝叶斯优化进行超参数调优。项目不仅结合了深度学习与贝叶斯方法,还通过跨领域技术融合为多特征分类算法的发展提供了新的视角。建议读者在实践中结合具体应用场景,调试代码并优化模型参数,以达到最佳效果。
2025-07-14 11:29:41 43KB Python DeepLearning
1
针对现有基于注意力机制的多模态学习,对文字上下文之间的自我联系和图像目标区域的空间位置关系进行了深入研究。在分析现有注意力网络的基础上,提出使用自注意力模块(self-attention,SA)和空间推理注意力模块(spatial reasoning attention,SRA)对文本信息和图像目标进行映射,最终得到融合特征输出。相较于其他注意力机制,SA和SRA可以更好地将文本信息匹配图像目标区域。模型在VQAv2数据集上进行训练和验证,并在VQAv2数据集上达到了64.01%的准确率。
2025-05-23 16:00:37 1018KB 视觉问答 注意力机制
1
卷积神经网络建立在卷积运算的基础上,它通过在局部感受野内将空间和通道信息融合在一起来提取信息特征。为了提高网络的表示能力,最近的几种方法已经显示了增强空间编码的好处。在这项工作中,我们专注于通道关系,并提出了一种新颖的架构单元,我们将其称为“挤压和激励”(SE)块,它通过显式建模通道之间的相互依赖性来自适应地重新校准通道方面的特征响应。我们证明,通过将这些块堆叠在一起,我们可以构建在具有挑战性的数据集上具有极好的泛化能力的 SENet 架构。至关重要的是,我们发现 SE 模块能够以最小的额外计算成本为现有最先进的深度架构带来显着的性能改进。 SENets 构成了我们 ILSVRC 2017 分类提交的基础,该分类提交赢得了第一名,并将 top-5 错误率显着降低至 2.251%,与 2016 年获胜条目相比相对提高了约 25%。
2025-05-20 10:40:43 2.06MB se注意力机制
1
内容概要:本文介绍了如何在Python中实现基于CNN(卷积神经网络)、BiLSTM(双向长短期记忆网络)和注意力机制结合的多输入单输出回归预测模型。文章首先阐述了项目背景,指出传统回归模型在处理复杂、非线性数据时的局限性,以及深度学习模型在特征提取和模式识别方面的优势。接着详细描述了CNN、BiLSTM和注意力机制的特点及其在回归任务中的应用,强调了这三种技术结合的重要性。文章还讨论了项目面临的挑战,如数据预处理、计算资源消耗、过拟合、超参数调整、长时依赖建模和多模态数据融合。最后,文章展示了模型的具体架构和代码实现,包括数据预处理、特征提取、时序建模、注意力机制和回归输出等模块,并给出了一个简单的预测效果对比图。; 适合人群:具备一定编程基础,特别是对深度学习和机器学习有一定了解的研发人员和技术爱好者。; 使用场景及目标:①适用于金融市场预测、气象预测、能源需求预测、交通流量预测、健康数据预测、智能制造等领域;②目标是通过结合CNN、BiLSTM和注意力机制,提高多输入单输出回归任务的预测精度和泛化能力,减少过拟合风险,提升模型的解释性和准确性。; 阅读建议:本文不仅提供了完整的代码实现,还详细解释了各个模块的功能和作用。读者应重点关注模型的设计思路和实现细节,并结合实际应用场景进行实践。建议读者在学习过程中逐步调试代码,理解每一步的操作和背后的原理,以便更好地掌握这一复杂的深度学习模型。
2025-05-15 15:05:41 36KB Python 深度学习 BiLSTM 注意力机制
1