内容概要:本文主要介绍了利用Google Earth Engine(GEE)平台对2000年与2022年的土地利用/覆盖数据(LULC)进行城市化变化分析的技术流程。通过构建城市区域掩膜,计算城市扩张的净增长与总增长面积,并结合随机像素筛选方法逼近预期的净增城市面积目标。同时,区分了“无变化”、“净城市增长”和“其他变化”三类区域,并实现了可视化制图与区域统计。代码还包含用于调试的像素计数函数和面积计算函数,最终将结果导出至Google Drive。; 适合人群:具备遥感与地理信息系统(GIS)基础知识,熟悉GEE平台操作及相关JavaScript语法的科研人员或高年级本科生、研究生;有一定编程经验的环境科学、城市规划等领域从业者; 使用场景及目标:①开展长时间序列城市扩展监测与空间分析;②实现土地利用变化分类与面积统计;③支持城市可持续发展与生态环境影响评估研究; 阅读建议:此资源以实际代码为基础,建议读者结合GEE平台动手实践,理解每一步逻辑,尤其是掩膜操作、面积计算与图像合成技巧,注意参数如分辨率、区域范围的适配性调整。
2026-01-14 20:21:45 3KB Google Earth Engine 遥感影像处理
1
电磁声发射检测技术是一种新型的无损检测技术,主要用于金属构件的缺陷检测和损伤评估。该技术通过对金属构件施加电磁加载,使得材料内部裂纹产生洛伦兹力,从而激发声发射信号。洛伦兹力是由于带电粒子在磁场中运动所产生的力,此力作用在裂纹处,可以看作是一种“声发射源”,产生的声发射信号包含了材料内部缺陷和损伤程度的信息。 电磁超声换能器(EMAT)是电磁超声技术的关键组件,能够在金属材料的集肤层内激发超声波。EMAT的工作原理是利用电磁-应力耦合效应,在金属表面产生超声波,而不需要耦合介质,这使得EMAT在高温、高压等恶劣环境下依然能够进行有效检测。相比于传统的压电换能器,EMAT具有非接触、无需耦合剂、可在线检测等优点。 在郭富坤等人的研究中,通过将EMAT电磁加载装置应用于电磁声发射检测,构建了一个具备输出激励信号、数据采集、信号处理和数据存储功能的虚拟仪器,并搭建了完整的实验系统。利用这套系统进行了铝板和钢板试件的检测实验,通过对比人工缺陷、通孔和完好板材的信号,验证了EMAT在电磁声发射检测中的有效性。 研究中提到的虚拟仪器技术是结合了计算机与传统仪器功能的一项技术,它能够利用软件来定义仪器的功能和界面,从而实现传统仪器的功能。这种技术具有成本低、灵活性高、扩展性强的优点,特别适合用于定制化的检测系统搭建。数据采集系统通常包括传感器、数据采集卡、数据处理与存储装置,能够实现信号的实时采集、处理和分析。 在实验中,通过人工引入缺陷的试件、通孔和完整无损的试件这三类不同的样本,研究者比较了它们各自的信号特征。结果显示,利用EMAT技术能够有效地检测到由裂纹引起的电磁声发射信号,且信号特征与材料的缺陷情况密切相关,能够对缺陷的有无和损伤程度进行评估。 国家自然科学基金和高等学校博士学科点专项科研基金的资助,显示了这项研究受到了国家层面的重视。这表明了对先进检测技术在国民经济和国防建设中应用的重视,同时,对于保障大型金属构件的安全性和可靠性具有重要的现实意义。特别是在航空航天、高铁建设等关键领域,通过有效的无损检测技术可以预防潜在的安全隐患,避免灾难性事故的发生。 总结来说,基于EMAT的电磁声发射检测方法是一种高效、准确、适应性广的无损检测手段。这项技术不仅在理论上得到了深入的研究,而且通过实验验证了其在实际应用中的可行性,具有广泛的应用前景和研究价值。随着技术的进一步发展和优化,该检测方法有望在更多的领域得到推广应用。
2025-12-08 20:32:00 1.06MB 首发论文
1
二维连续小波变换是现代信号处理领域中一个极为重要的工具,它在图像处理、模式识别、以及复杂信号分析中扮演着重要角色。本文研究的核心在于探讨基于二维连续小波变换的奇异性检测方法,即研究如何通过小波变换来有效识别图像或其他信号中的奇异点或奇异区域。 在深入研究之前,首先需要了解什么是奇异性。在信号处理中,奇异点指的是信号中不连续或变化异常剧烈的点。这些点往往携带着信号重要的特征信息,例如边缘、角点等。奇异性检测,即检测信号中的这些不规则区域,对于理解信号的局部特性至关重要。 二维连续小波变换是一种将信号在时频平面上展开的数学方法,通过选择合适的小波基函数可以对信号进行多尺度的分析。在二维情况下,它能够同时对图像的行和列进行分析,从而揭示图像中的局部特征。连续小波变换相比于离散小波变换,可以提供更平滑的尺度变化,因此在处理连续信号时具有优势。 在基于二维连续小波变换的奇异性检测方法研究中,主要关注点是如何选择合适的小波函数以及如何确定变换的最优尺度。小波函数的形状、宽度以及衰减速率都会对变换结果产生影响。而最优尺度的选择则依赖于信号本身的特性和所需的奇异性检测精度。通常,尺度越大,信号的时频分辨率越低,但对信号的平滑程度越高;反之亦然。 奇异性检测的方法可以分为两类:基于模极大值的方法和基于能量的方法。基于模极大值的方法通过追踪小波变换系数的局部最大值来定位奇异点;而基于能量的方法则通过分析小波变换系数的能量分布来进行检测。在二维情况下,这些方法可以应用在图像的边缘检测、纹理分析等领域,用于医学图像处理、卫星图像分析等实际问题中。 本研究的重要内容之一是探索两种或多种不同小波基函数在奇异性检测中的性能比较。通过实验分析,可以找出在特定应用场景下最有效的小波变换方法。此外,研究还可能涉及如何通过优化算法来自动选择最优的小波基函数和变换尺度,以及如何将这种方法推广到多维信号的奇异性检测中。 由于压缩包内文件列表暂无信息,具体研究的实现细节、实验数据、以及研究成果等都无法提供。但是可以预见的是,本研究将为二维连续小波变换的奇异性检测方法提供理论基础,并可能推动相关技术在实际应用中的发展。 二维连续小波变换的奇异性检测方法研究对于提高信号与图像处理技术的精确度和效率具有重要意义。通过深入探索和优化小波变换方法,可以更好地理解和分析信号的局部特性,为各种实际问题的解决提供有力的技术支持。
2025-10-21 20:34:25 636KB
1
三相并联型有源电力滤波器APF,是一种用于电力系统中谐波补偿的高级电力电子设备。其仿真设计涉及复杂的电力电子技术和控制理论,本文将重点介绍其电压外环电流内环均采用PI控制,以及采用id-iq谐波检测方法和SVPWM调制方法的特点与应用。 PI控制,即比例积分控制,是一种常用的控制策略。在电压外环中,PI控制器的主要作用是维持APF输出电压的稳定,确保其与电网电压同步,保证补偿效果的精确度。而电流内环PI控制则负责调整APF输出的电流,以确保准确补偿电网中的谐波电流。两者的结合可以实现有源电力滤波器的高性能动态响应。 id-iq谐波检测方法,是基于dq变换的现代电力系统谐波检测技术。通过将三相电流信号转换至dq坐标系中,可以分离出基波分量和各次谐波分量,从而获得准确的谐波信号。这一方法的精确性与实时性对于有源电力滤波器性能至关重要。 SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)是一种先进的PWM调制技术。它通过调整开关器件的开关时间,来控制输出电压矢量的大小和方向,进而实现对APF输出电压的精确控制。与传统的SPWM相比,SVPWM可以提高电压利用率,减少开关损耗,具有更高的效率和更好的输出波形。 在电力系统中,滤波器的作用是滤除或减少电力系统中的谐波分量。有源电力滤波器APF作为一种新型的动态谐波抑制设备,能够在实时检测电网中的谐波成分后,主动生成一个与之大小相等、方向相反的补偿电流注入电网中,从而实现谐波的动态补偿。 综合以上技术,三相并联型有源电力滤波器APF仿真系统能够实现对电力系统中谐波的有效补偿。通过仿真模拟,可以在不干扰实际电力系统运行的情况下,验证APF的设计方案和控制策略。同时,仿真结果还可以提供系统设计的调试和优化依据,为实际工程应用奠定基础。 文件中的标题基于控制的三相并联型有源电力滤波.doc可能包含了该主题的详细理论分析和仿真模型构建过程,而三相并联型有源电力滤波器仿真分析的相关.txt文档则可能详细阐述了仿真分析的过程、结果和结论。图像文件如2.jpg、3.jpg、4.jpg和1.jpg可能提供了仿真界面、控制结构图或实验波形等直观的视觉信息。此外,文档中的其他文本文件可能包含了该主题相关的技术分析、实验数据或者相关研究内容。 三相并联型有源电力滤波器APF仿真结合了PI控制、id-iq谐波检测和SVPWM调制技术,在电力系统谐波补偿领域具有重要的研究和应用价值,能够有效提升电力系统的稳定性和电能质量。
2025-10-18 13:02:34 1.57MB
1
在当前电子通信技术飞速发展的背景下,设备故障检测成为了确保通信网络安全稳定运行的关键环节。传统故障检测方法主要依赖于人工经验和简单的算法模型,面对复杂多变的通信环境显得力不从心。因此,基于深度学习的故障检测方法应运而生,其目的在于提升检测的准确性和效率。 电子通信设备故障检测方法的研究包括多个方面,首先是数据收集与处理。为了构建深度学习模型,需要收集电子通信设备的运行数据,这包括了通信信号、温度、电压等。这些数据需要经过预处理,如清洗和归一化操作,以确保数据质量。是深度学习模型的构建,选择合适的深度学习算法如卷积神经网络(CNN)、循环神经网络(RNN)等,构建起故障检测模型。深度学习模型在训练和学习过程中,通过自动特征提取能力,能够从设备运行中提取出关键特征,并结合分类算法进行故障类型识别。 此外,模型的优化与验证也是研究的重要组成部分。通过对比实验和参数调整等方法对模型进行优化,提高模型的泛化能力和鲁棒性。使用实际运行数据对模型进行验证,确保模型的实用性和可靠性。这将有助于提高故障检测的精度和效率。 具体应用案例分析部分将深入探讨几个不同的应用实例,通过案例分析展示基于深度学习的电子通信设备故障检测技术在实际场景中的应用效果及其潜在价值。 尽管深度学习在电子通信设备故障检测方面具有明显的优势,但同时也面临技术挑战。这些挑战包括数据集的质量和数量、模型的泛化能力、以及在不同设备和网络环境中的适用性等。解决方案可能涉及到更高级的数据处理技术、更复杂的网络结构设计,以及增强学习和迁移学习等新兴方法的应用。 行业应用前景及发展趋势的探讨则指向未来深度学习技术在电子通信设备故障检测领域可能带来的变革,以及这些技术在实际行业中的应用潜力和发展方向。 本文通过对基于深度学习的电子通信设备故障检测方法的系统性研究,提出了一个综合性的故障检测解决方案。从数据收集与处理,深度学习模型构建,特征提取与分类,再到模型优化与验证,本文详细阐述了实现高效化和智能化故障检测的全过程。研究成果不仅为通信网络安全稳定运行提供了新思路,也为未来故障检测技术的发展指明了方向。
2025-09-15 09:38:30 54KB 人工智能 AI
1
风机叶片缺陷自动检测是风力发电行业维护和安全生产的重要环节。随着风力发电技术的发展,对风机叶片的质量和安全性能要求越来越高。为了提高检测效率和准确性,基于深度学习的自动检测方法应运而生,该方法通过构建深度神经网络模型,能够有效识别和定位风机叶片上的各类缺陷,具有传统手工检测无法比拟的优势。 在研究背景与意义上,研究者们指出,风机叶片的缺陷可能来自生产过程中的质量问题,或者在运行过程中由于外部环境影响产生的损伤。这些缺陷若不及时发现和处理,可能导致叶片的性能下降,甚至引起安全事故。因此,实现自动化、高效率的缺陷检测对于提升风电场的运行效率和安全性具有重要价值。 国内外研究现状方面,文档介绍了目前常见的检测技术,包括光学检测、超声检测、磁粉检测等,并分析了深度学习技术在风电叶片缺陷检测领域的应用情况。深度学习技术在图像识别、模式分类等方面具有显著优势,成为当前研究的热点。 深度学习理论基础部分,文档详细阐释了深度学习的基本概念、原理,以及卷积神经网络(CNN)的结构和工作原理。CNN通过模拟人类视觉系统的运作机制,特别适合处理图像数据,成为图像识别领域的重要技术。 在数据预处理与特征提取方面,文档涉及数据的收集和标注、数据增强技术和特征提取方法。高质量的数据是深度学习模型训练的基础,数据标注则为模型提供学习的“指导”。数据增强技术能够提高模型的泛化能力,特征提取则关注如何从原始数据中提取有益于模型学习的特征。 模型构建与训练部分,文档介绍了网络架构设计、数据集的划分和模型的训练调优策略。网络架构设计要考虑到模型的深度、宽度以及参数设置,合理划分训练集、验证集和测试集对于评估模型的性能至关重要。模型训练的调优策略,则关乎到最终模型的性能和效果。 模型评估与优化部分,文档讨论了评估指标的选择、模型性能测试和模型优化方法。准确的评估指标可以量化模型的性能,测试集上的性能测试是验证模型好坏的关键,模型优化方法则包括参数调整、网络剪枝、知识蒸馏等策略。 在结论与展望部分,文档总结了研究成果,并指出了研究中存在的问题与不足。同时,文档也展望了未来的研究方向,比如如何提升模型的实时性,如何优化算法减少计算资源消耗等。 风机叶片缺陷自动检测方法的研究,不仅对提升风电叶片质量检测的自动化水平具有重大意义,也对风力发电行业的发展起到推动作用。随着深度学习技术的不断进步,未来该领域的研究必将更加深入,相关技术也将更加成熟和广泛应用。
2025-09-15 09:36:28 99KB
1
【基于机器学习的网络异常流量检测方法】 网络异常流量检测是网络安全领域的重要研究课题,它涉及到互联网技术的快速发展和日益复杂的网络环境。异常流量数据,包括Alpha Anomaly、DDoS、Port Scan等不同类型的异常流量,对个人和国家的计算机安全构成严重威胁。这些异常流量可能源于恶意行为或网络软硬件故障,导致网络稳定性下降和潜在的安全隐患。 1. 网络异常流量类型 - Alpha Anomaly 异常流量:这种流量指的是高速点对点的非正常数据传输,其特征主要体现在字节数和分组数的异常增加。 - DDoS 异常流量:分布式拒绝服务攻击,通过大量源头向单一目标发送请求,导致服务瘫痪。检测特征包括分组数、源IP地址、流计数和目的IP地址。 - Port Scan 异常流量:针对特定端口的探测活动,可能是为了寻找漏洞或进行入侵。检测特征通常涉及目的端口总数。 - Network Scan 异常流量:更广泛的网络扫描行为,尝试发现网络中的弱点。检测特征可能涵盖目的IP总数、源IP总数等。 - Worms 异常流量:蠕虫病毒传播导致的流量异常,可能导致网络拥堵。 - Flash Crowd 异常流量:短时间内大量用户访问同一资源,如热门事件或新闻报道,可能会对服务器造成压力。 2. 机器学习在检测中的应用 传统检测方法如基于规则的系统和统计模型在应对复杂异常流量时往往力不从心。因此,研究者转向了机器学习,利用其自适应性和泛化能力来提高检测效率和准确性。文中提到的改进型ANFIS(Adaptive Neuro-Fuzzy Inference System)算法是一种融合模糊逻辑和神经网络的智能模型,能有效处理非线性问题。 - 改进型ANFIS算法:针对传统神经网络算法(如BP神经网络)在训练过程中可能出现的局部最小值问题,通过附加动量算法优化模型参数,提高训练效率并避免陷入局部最优,从而提升检测性能。 3. 性能比较 通过KDD CUP99数据集和LBNL实验室的数据进行测试,改进型ANFIS算法相对于BP神经网络显示出更高的训练效率和检测准确率。这表明机器学习方法在异常流量检测中具有显著优势,能够更好地适应不断变化的网络环境和新的威胁模式。 基于机器学习的网络异常流量检测方法,如改进型ANFIS,为网络安全提供了一种有效且灵活的解决方案。通过对各种异常流量类型的深入理解,结合先进的算法,可以增强网络防御能力,保护网络资源免受恶意攻击。未来的研究将继续探索更高效、更精准的检测技术,以应对不断演变的网络威胁。
2025-09-09 16:51:50 1.4MB
1
"基于相机和毫米波雷达融合的水面小目标检测方法的研究" 从标题和描述中,我们可以总结出以下知识点: 1. 水面小目标检测是USV环境感知的一项重要任务,目的是检测水面上的小障碍物,以避免碰撞和提高USV的安全性和自主操作能力。 2. 基于视觉的小目标检测存在三个主要挑战:水面上的光反射干扰、周围景物反射干扰和探测距离短。 3. 毫米波雷达在自动驾驶中显示出巨大的价值,能够提供长距离的检测可能性,并且对照明条件更鲁棒。 4. 基于毫米波雷达的水面上小物体检测存在困难,例如来自非金属目标的微弱回波、水面杂波引起的干扰和缺少语义信息。 5. 为了提高水面小目标检测的鲁棒性,需要充分利用毫米波雷达点云数据,并与RGB图像进行深层次融合。 6. 该方法可以应用于USV的小目标检测,提高检测性能,并且能够规避像浮标和礁石的小障碍物。 7. 该方法通过利用雷达数据的特点,提高了水面小目标检测的平均检测准确率,并且保持了良好的性能,即使一个单一的传感器退化。 从标签中,我们可以总结出以下知识点: 1. 基于相机和雷达融合的水面小目标检测方法是USV环境感知的一项重要技术。 2. 内陆水域USV任务需要高效的水面小目标检测技术,以避免碰撞和提高USV的安全性和自主操作能力。 3. 雷达-视觉融合方法可以提高水面小目标检测的鲁棒性和检测性能。 从部分内容中,我们可以总结出以下知识点: 1. 该研究提出了一种基于雷达-视觉融合的水面小目标检测方法,能够提高检测性能和鲁棒性。 2. 该方法采用了一种新的毫米波雷达点云表示格式,将RGB图像与雷达数据进行深层次多尺度融合。 3. 该方法在真实世界场景中收集的数据集上进行了评估,达到了90.05%的平均检测准确率,并且保持了良好的性能,即使一个单一的传感器退化。 4. 该方法可以应用于USV的小目标检测,提高检测性能,并且能够规避像浮标和礁石的小障碍物。 该研究提出了一种基于雷达-视觉融合的水面小目标检测方法,能够提高检测性能和鲁棒性,并且可以应用于USV的小目标检测。
2025-07-26 01:32:13 2.73MB
1
电桥法是电力电缆测距的经典方法,其历史比较悠久。包括直流电阻电桥法、直流高压电阻电桥法和电容电桥法等。电阻电桥法只能测试一些单相对地或两相间绝缘电阻比较低的电缆故障;高压电桥法主要用于测试阻值大于10KΩ而小于兆欧的主绝缘单相接地故障或相间并对地故障;电容电桥法主要测试电缆的开路断线故障。  电桥法操作相对简单方便,但需要事先知道电缆的准确长度等原始资料,同时不适用于检测高阻故障。而实际电力电缆故障中的绝大多数为高阻故障。因为在故障电阻很高的情况下,电桥电流很小,一般灵敏度的仪表难以探测。  (2)行波法  1)低压脉冲法  低压脉冲法主要用于测量电缆的开路、短路和低阻故障的故障距离;同时还可
2025-06-19 17:10:23 119KB
1
为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度残差全卷积网络的高精度云检测方法,能够实现对遥感影像云层目标像素级别的分割。首先,编码器通过残差模块的不断降采样提取图像深层特征;然后,应用双线性插值进行上采样,结合多层次编码后的图像特征完成解码;最后,将解码后的特征图与输入图像融合后再次进行卷积,实现端到端的云检测。实验结果表明,对于Landsat 8云检测数据集,所提方法的像素精度达到93.33%,比原版U-Net提高了2.29%,比传统Otsu方法提高了7.78%。该方法可以为云层目标智能化检测研究提供有益参考。 【基于深度残差全卷积网络的Landsat 8遥感影像云检测方法】是一种利用深度学习技术改进遥感影像云层检测的创新方法。传统的云检测手段往往因为特征提取复杂、步骤繁多以及鲁棒性不足而限制了其在高精度应用中的表现。而该方法则旨在克服这些缺点,通过深度残差全卷积网络(Deep Residual Fully Convolutional Network,DRFCN)实现对遥感影像云层目标的像素级精确分割。 深度残差网络(Residual Network)是深度学习领域的一个重要突破,它通过引入残差块来解决深度神经网络中的梯度消失和爆炸问题,使得网络能更有效地学习到高层特征。在云检测中,DRFCN的编码器部分利用残差模块进行连续的下采样,这有助于提取图像的深层语义特征,如纹理、形状和颜色等与云层相关的重要信息。 全卷积网络(Fully Convolutional Network, FCN)在此过程中起到了关键作用,它允许网络直接进行像素级别的预测。在DRFCN中,经过编码器提取特征后,采用双线性插值进行上采样,目的是恢复图像的空间分辨率,同时结合不同层次编码后的图像特征进行解码。这种解码过程有助于保持从低层到高层的细节信息,确保了云检测的准确性。 解码后的特征图与原始输入图像融合,再次进行卷积操作,实现了端到端的云检测。这种方法的优势在于可以综合高级特征和低级特征,提高检测的鲁棒性和精度。实验结果显示,对于Landsat 8云检测数据集,该方法的像素精度达到了93.33%,相比原版的U-Net(Unet)提高了2.29%,相对于传统的Otsu方法提高了7.78%。 此方法不仅提升了云检测的精度,也为遥感影像分析的智能化和自动化提供了有效工具,特别是在气候监测、环境变化研究、灾害预警等领域具有广泛的应用潜力。未来的研究可以进一步优化网络结构,探索更高效的方法来融合特征,以及针对不同类型的遥感影像进行适应性调整,以提升在更大范围和更复杂条件下的云检测性能。
2025-06-04 12:25:18 2.36MB 深度学习 语义分割
1