在现代工程设计和流体动力学模拟中,准确地理解和量化湍流模型的不确定性变得越来越重要。湍流现象广泛存在于各种自然和工程环境中,其复杂性要求我们使用高效的模型来预测流体的运动和湍流特性。在众多模型中,雷诺平均纳维-斯托克斯(RANS)模型因其相对较低的计算成本而被工程实践所广泛采用。然而,RANS模型由于其固有的简化和结构缺陷,往往无法提供完全准确的预测。因此,对于基于RANS模型的预测准确性,进行不确定性估计成为了湍流研究中的一个热点和挑战。 传统上,通过构建和使用概率模型来量化预测的不确定性是一种常见做法。然而,这种方法在处理高度非线性和复杂的湍流系统时存在局限性。近年来,随着机器学习技术的飞速发展,尤其是随机森林算法等方法的引入,为解决这一问题提供了新的思路。机器学习的潜力在于从大量的实验数据和高保真度模拟数据中学习,以此来预测湍流的不确定性和变异性。 但是,简单的应用机器学习方法也可能带来新的问题。在湍流模型中,关键的雷诺应力张量必须满足一定的物理约束条件,如非负的分量、正定的矩阵等。如果忽略这些物理约束,可能导致模型产生非物理的预测结果,这些结果不仅违背了基本的物理定律,也可能导致数值模拟的不稳定和不收敛。这要求在应用机器学习方法时,必须考虑其与物理规律的兼容性。 本文介绍了一种结合机器学习和物理约束的框架,旨在解决上述问题。研究者使用随机森林算法来训练机器学习模型,该模型能从数据中学习到湍流特性的复杂模式和结构。接着,将训练好的模型嵌入到计算流体动力学(CFD)求解器中,以确保在估计不确定性的同时,模型的输出满足物理约束条件,从而保证预测结果的物理可行性。 通过这种方法,湍流模型不确定性估计不再仅仅依赖于传统的统计方法,而是通过数据驱动的学习和物理约束的结合,提高了预测的准确性和可靠性。这种新的框架不仅可以提供更精细的湍流预测,还能帮助识别和量化RANS模型的局限性,为更精确的不确定性评估提供了可能。 在实际工程应用中,这一方法的应用前景非常广泛。无论是在机械、航空航天、土木工程还是生物医学领域,湍流的准确预测都是提升设计效率和产品性能的关键。例如,在航空领域,准确模拟飞机翼型周围的流体行为对于设计更有效的翼型至关重要。在土木工程中,理解桥梁和建筑物周围的湍流特性可以提高其结构的安全性和耐用性。在生物医学领域,预测血液流动的湍流模式对于设计更有效的心脏瓣膜和血管支架具有重要意义。 未来的研究将着眼于进一步优化这一框架,提高预测精度的同时确保结果的物理一致性。同时,也需要开发易于集成到现有CFD软件中的计算工具,以便其他研究人员和工程师能够利用这些先进的方法来应对湍流建模的挑战。随着机器学习和物理约束结合方法的不断进步和推广,我们有望更高效地解决现实世界中复杂的流动问题,推动流体湍流建模的科学进步。
2025-10-01 22:05:08 1.07MB
1
是一个专注于零售行业的商业智能数据集,通常用于数据分析、市场研究和决策支持。它可能基于真实的零售业务数据,经过整理和匿名化处理,以供数据分析师、研究人员和机器学习工程师使用。数据集的构建旨在为零售企业提供深入的业务洞察,帮助其优化运营策略、提升客户满意度和提高市场竞争力。该数据集可用于多种分析和建模任务:销售预测:通过历史销售数据,利用机器学习模型预测未来的销售趋势,帮助零售商优化库存管理和资源分配。客户行为分析:通过客户购买记录和行为数据,进行客户细分和个性化推荐,提升客户满意度和忠诚度。市场趋势分析:分析销售数据的时间序列,识别季节性变化和市场趋势,为营销策略提供依据。库存优化:通过销售和库存数据,优化库存水平,减少积压和缺货情况。能够为零售企业提供丰富的数据支持和深刻的业务洞察,帮助其在竞争激烈的市场中保持领先地位。
2025-09-29 23:25:37 837KB 机器学习 预测模型
1
本书通过真实场景项目,系统讲解机器学习核心技能,涵盖数据预处理、模型构建、评估与部署。从汽车价格预测到客户流失分析,再到服装图像分类,项目覆盖回归、分类与深度学习。重点突出模型部署,使用Flask、Docker、AWS Lambda及Kubernetes实现生产化应用。全书以实践为导向,融合工程思维,帮助读者掌握20%的核心知识解决80%的实际问题,快速构建可落地的机器学习作品集。配套代码与数据开放,适合动手学习。
2025-09-28 16:35:03 76.76MB 机器学习 项目实战 模型部署
1
《动手学习Scikit-Learn与TensorFlow》是Aurélien Géron所著的一本关于机器学习的入门书籍,第三版更新中涵盖了从基础到深度学习的各个层面。本书不仅适合于初学者,还提供了深入的实践技巧,帮助读者构建能够从数据中学习的智能系统。 机器学习的概念、工具和技术,是本书的三大主题。通过使用Scikit-Learn、Keras和TensorFlow这三个生产就绪的Python框架,作者让读者能够直观地理解构建智能系统的相关概念和工具。书中几乎不涉及复杂的理论,而是通过具体的实例和代码演示,让读者在实践中学习。 本书内容从简单的线性回归开始,逐步深入到复杂的深度神经网络。每章都配有代码示例和练习,帮助读者巩固所学知识,并将理论应用到实践中。编程经验是学习本书的唯一前提,不需要读者对机器学习有深入的背景知识。 具体来说,本书涵盖了以下几个方面: 1. 使用Scikit-Learn跟踪一个完整的机器学习项目,从而有一个从头到尾的项目实施经验。 2. 探索多种模型,包括支持向量机、决策树、随机森林以及集成方法。 3. 利用无监督学习技术,如降维、聚类和异常检测。 4. 深入神经网络架构,包括卷积神经网络、循环神经网络、生成对抗网络、自编码器、扩散模型和变换器。 5. 利用TensorFlow和Keras构建和训练用于计算机视觉和自然语言处理的神经网络。 作者Aurélien Géron的这本书被誉为学习实用机器学习的绝佳资源。书中不仅提供了清晰、易懂的解释,还有丰富的实践技巧,帮助读者建立对机器学习理论和实践问题解决方法的直观理解。 通过这本书,读者将能够掌握使用Scikit-Learn和TensorFlow构建和训练各种机器学习和深度学习模型的技巧,从而有能力构建出智能系统。本书推荐给所有对学习实用机器学习技术感兴趣的读者。
2025-09-24 01:49:47 69.65MB 机器学习
1
内容概要:本文介绍了基于MATLAB实现的Transformer-SVM组合模型在多特征分类预测中的应用。项目背景在于数据时代对高效分类预测的需求,特别是处理高维、多模态、多噪声数据的挑战。Transformer凭借自注意力机制捕捉全局信息,SVM则擅长高维空间分类,二者结合提升了多特征数据分类的准确性和鲁棒性。项目通过MATLAB实现数据预处理、Transformer特征提取、SVM分类、模型集成与优化、预测输出等模块,展示了在不同领域的广泛应用,如医学影像分析、金融风控、营销推荐、社交媒体分析及智能制造。; 适合人群:对机器学习和深度学习有一定了解,尤其是希望掌握多特征分类预测技术的研究人员和工程师。; 使用场景及目标:①适用于处理高维、多模态、多噪声数据的分类预测任务;②提高模型在复杂数据集上的分类精度和泛化能力;③应用于医学、金融、营销、社交、制造等多个领域,提供精准的数据分析和决策支持。; 阅读建议:本项目涉及Transformer和SVM的深度融合及其实现细节,建议读者具备一定的MATLAB编程基础和机器学习理论知识。在学习过程中,结合代码示例进行实践,关注特征提取与分类模块的设计,以及模型调优和集成学习的应用。
2025-09-22 20:05:59 35KB MATLAB Transformer 机器学习
1
机器学习领域,经典算法是构建基础模型的核心。本篇内容涉及的十大经典算法分别是:C4.5、CART(分类与回归树)、朴素贝叶斯、支持向量机(SVM)、K近邻(KNN)、AdaBoost、K均值(K-means)、最大期望(EM)、Apriori算法以及Pagerank。这些算法基于不同的原理和应用场景,构成了机器学习的基本工具箱。 机器学习方法根据学习方式的不同可以划分为有监督学习、无监督学习以及强化学习。有监督学习要求输入数据中含有导师信号,其结果通常是以函数形式表示的模型,例如贝叶斯网络、神经网络和支持向量机等。无监督学习则不包含导师信号,学习的目标是识别出数据中的结构,聚类算法是无监督学习中应用广泛的一类方法。强化学习是通过与环境交互进行学习,旨在通过奖惩机制优化决策策略。 有监督学习在分类问题中应用广泛,例如C4.5算法就是一种基于决策树的学习方法。决策树是一种流程图式的结构,通过递归分裂数据集构造模型。它易于理解和实施,适用于知识发现,但是其顺序扫描和排序数据的过程可能导致效率低下。CART算法是另一种决策树方法,它将数据集分割为具有更高一致性的子集,并通过剪枝防止过度拟合。 朴素贝叶斯算法是一种基于概率的分类方法,它假设特征之间相互独立,通过计算特征在给定类别条件下的概率来预测数据的分类。支持向量机(SVM)是一种旨在寻找最优分类超平面的算法,它适用于线性和非线性问题,并能够处理高维数据。 K近邻算法(KNN)是基于实例的学习方法,它根据最近邻的K个样本来预测新样本的分类。AdaBoost是一种集成学习方法,它通过组合多个弱分类器来形成一个强分类器。K均值算法(K-means)是一种聚类算法,它通过迭代计算将数据集分成若干类别。最大期望(EM)算法是一种迭代算法,主要用于含有隐变量的概率模型参数的估计。 Apriori算法是用于发现频繁项集的算法,它是关联规则学习的基石。Pagerank算法最初用于网页排名,它能够根据网页间的链接关系评估网页的重要性。 半监督学习结合了少量的有监督数据和大量的无监督数据,可以使用Co-training、EM、Latent variables等方法进行学习。此类学习策略能够利用未标注数据增加训练样本,减少对标注数据的依赖。 机器学习的十大经典算法涵盖了有监督、无监督以及强化学习的多种场景,它们为解决不同的数据挖掘和模式识别问题提供了丰富的工具。从决策树、概率模型到聚类分析,每种算法都有其特定的应用背景和优缺点。在实际应用中,选择合适的算法不仅需要理解算法本身的原理,还要结合具体问题的需求进行考量。
2025-09-21 14:37:59 2.84MB
1
在当前全球机器学习技术的发展中,大模型推理加速已经成为一个重要的研究方向。张君,作为昇腾生态的技术专家,通过参与昇思AI框架开发和大模型推理加速相关工作,致力于优化推理框架、模型算法和算子加速库等多个层面,旨在提升大模型推理性能。 张君指出大模型推理面临的三大技术挑战。首先是计算和内存需求的急剧增长。随着模型参数的扩大和序列的加长,推理过程中所需的计算和内存资源大幅增加。例如,2000亿参数量的模型在推理时需要6张RTX 3090Ti GPU或2张NVIDIA A100 GPU。而硬件带宽的限制、模型参数增长速度超过硬件内存容量提升速度以及算力与访存带宽提升速度的差距,使得推理超大模型变得越来越困难。 第二个挑战是推理延迟和吞吐量问题。推理过程包含两阶段,即Prefill阶段和Decode阶段。两阶段推理差异大,导致算力利用率低,并且难以充分使用算力资源。此外,不同请求的输入和输出长度不同,导致处理不同请求的计算量和延迟各异,进而影响用户体验和系统成本。 第三个挑战涉及从单模态到多模态再到更复杂的推理模型,如OpenAI o1的推理成本增加。随着应用场景的多元化,例如音视频推理,不仅计算量和显存需求增加,推理成本也相应提高。复杂的模型结构,如OpenAI o1内部的长思维链路,要求更高的计算量和推理时间。 针对这些挑战,张君介绍了昇腾硬件上的推理加速实践。通过优化推理框架、模型算法和算子加速库,能够有效提升大模型推理性能。例如,昇腾大模型推理框架MindIE-LLM和Transformer领域加速库ATB的开发,都是在这一方向上的重要工作。 张君的工作内容涵盖了从理论研究到实践应用的多方面。在理论研究方面,他发表了多篇论文,并参与了昇思AI框架的开发。在实践应用方面,他通过动态图的自动微分技术以及动静结合模块的优化,实现了推理加速的技术创新。 通过这些实践,张君展现了优化实践的路径,包括模型结构的优化、算子库的加速、硬件平台的优化以及分布式推理的创新。他的工作为大模型推理加速提供了重要的技术参考和实践案例,为昇腾硬件生态的建立和人工智能应用的发展做出了积极贡献。 展望未来,张君认为大模型的参数和序列将会继续增长,多模态和跨模态的应用将会变得越来越广泛。因此,推理加速技术的发展需要不断地进行,以适应更加复杂的模型和更广泛的应用场景。最终,张君希望通过不懈的努力,实现大模型推理加速的技术突破,推动人工智能技术的发展与应用。
2025-09-21 12:15:39 7.29MB
1
机器学习作为人工智能的一个重要分支,其核心概念可概括为计算机程序通过经验自我改进的自动化过程。机器学习的基本概念涉及对其数学定义、性质及其物理意义的深入理解。在算法应用方面,机器学习涵盖广泛,包括但不限于对语言、文字、图像、场景、自然物体等进行识别和认知学习,以及推理、决策等复杂智能行为。此外,机器学习的推广能力和容错性是其两个显著特点,这些能力使得机器学习系统能够在有限的样本集基础上,对整个世界的观测对象集合进行模型推算,从而尽可能真实地反映这个世界。 机器学习的研究意义深远,正如《Science》2001年的一篇论文所述,机器学习对于科学研究的各个环节都有相应的发展,并有可能实现从假设生成、模型构造到决定性实验的自动化。目前,机器学习研究在许多基本论题上取得了显著进展,并有望在未来持续稳定发展。机器学习算法的多样性和复杂性使得它们在众多领域中发挥着关键作用。不同的机器学习算法之间存在着明显的差异和特定的应用场景,比如决策树、神经网络、支持向量机、聚类算法等。这些算法在处理不同类型的数据和解决不同问题时表现出不同的优势和局限性。因此,了解和比较各种算法的性能特点对于选择适合的机器学习方法至关重要。 机器学习算法的分析比较不仅包括对各自性能的评估,还包括对各自适用条件和限制的考量。对于机器学习可能的发展方向,除了提高现有算法的性能和效率,还包括开发新的算法以适应更复杂的问题和应用场景。为了支持这些研究和实践,众多经典的机器学习参考书为研究人员和实践者提供了理论和实践上的指导。例如,《机器学习》一书为理解机器学习的基础提供了详细的论述,而《神经网络与机器学习》则深入探讨了机器学习与神经网络之间的联系。 机器学习作为一种能够使计算机通过经验学习并提高性能的技术,其算法的多样性、理论基础的丰富性以及在各个领域的广泛应用性共同构成了这一领域的核心价值。随着研究的不断深入和技术的发展,机器学习预计将在未来科学研究和应用中扮演更加重要的角色。
2025-09-21 10:33:56 7.15MB
1
机器学习经典算法PPT课件.ppt
2025-09-21 10:30:07 2.52MB
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-09-19 10:22:27 4.65MB Python
1